
Assignment 2

Railway Modelling in AToMPM

Simon Van Mierlo
simon.vanmierlo@uantwerpen.be

1 Practical Information

The goal of this assignment is to design a domain-specific modelling language
(formalism) and subsequently to model railways in that language in the
visual modelling tool AToMPM. The different parts of this assignment are
listed below:

1. Implement the abstract syntax of your language in AToMPM (in the
/Formalisms/ LanguageSyntax /SimpleClassDiagram formalism).

2. Enrich the abstract syntax with constraints so that you can check that
every model is well-formed.

3. Create a concrete syntax (in the /Formalisms/ LanguageSyntax /ConcreteSyntax
formalism), and generate a modelling environment (by compiling the
metamodel and the concrete syntax model). Do this incrementally.

4. Make your railway language visually more appealing by adding actions
that move/resize/. . . model elements and display information on the
elements of the model. To implement this, you’ll need to make use of
the mappers and parsers in the concrete syntax of your formalism.

5. Create some railway models that are representative for all the features
in your language. Some should be valid models (check by verifying
them), and some should be invalid, to show that your constraints are
correct.

Write a report that includes a clear explanation of your complete so-
lution, the modelling choices you made, as well as an explanation of your
testing process. Also mention possible difficulties you encountered during
the assignment, and how you solved them. You will have to complete this
assignment in groups of 2. Submit your assignment (report in pdf, ab-
stract and concrete syntax definition, and example models) on Blackboard
before Friday, October 28, 13:00h.

Contact Simon Van Mierlo (simon.vanmierlo@uantwerpen.be) if you
have a problem.

1

simon.vanmierlo@uantwerpen.be
mailto:simon.vanmierlo@uantwerpen.be


2 Requirements

This section lists the requirements of the railway domain-specific language.
They are split into two sections: one on abstract syntax, and one on concrete
syntax. Make sure to test each requirement with test models!

The abstract syntax of the DSL captures its syntax and static semantics.
The requirements of the railway language are listed below:

• A railway system consists of the infrastructure with the trackwork, the
signalling equipment, and the stations, as well as the trains driving on
the trackwork and through the stations.

• A railway network consists of a number of interconnected railway seg-
ments. The types of segments your language needs to support are
listed below:

– Straights—the most trivial segment, allows a train to move
straight. Has one incoming and one outgoing segment.

– Turnouts—allows a train to go straight, or take a diverging route
to another track connected to the segment. Has one incoming
segment and two outgoing segments. The direction of a turnout
can be changed—it’s either in straight mode, meaning the train
will take the straight route, or in diverging mode, meaning the
train will take the diverging route.

– Junctions—joins two segments. Has two incoming segments
and one outgoing segment. The direction of a junction can be
changed—it’s either in straight or diverging mode, selecting the
train which can enter the segment.

– Stations—like straights, but can also be at the end or beginning
of a track. Has zero or one incoming and zero or one outgoing
segment, but is always connected to at least one track. Each
station has a unique name, that starts with a single upper case
letter followed by zero or more lower case letters, and ends with
zero or more numbers.

• Although an undesirable property at runtime, your language should
allow for more than one train to be present on a railway segment.

• A railway network does not allow loops (i.e., it should never be possible
to start at a station, move in one direction, and end up at that same
station).

• The signalling equipment of the railway system consists of lights. These
lights control the traffic on a segment and can be in two states—red
means traffic on that segment needs to wait, green means the traffic
can pass. Segments only allow one-way traffic.

2



• Trains have a unique identifier, that start with an upper case letter,
followed by four numbers. A train can be on at most one segment.

Each train has an associated schedule. This schedule is modelled in a second
domain-specific language. We do this because we want to load multiple
schedules for the same railway network. The requirements for the scheduling
language are listed below:

• A schedule is associated to a train by referring to the name of the
train.

• The schedule of a train tells it where to go—it contains a sequence of
consecutive steps. The ‘start’ step contains the name of the station
where the train will start. It has no incoming steps and one outgo-
ing step. The ‘end’ step contains the name of the station where the
train will stop. It has one incoming step and no outgoing steps. The
start and end steps are mandatory. In between, the train has to be
instructed to take the diverging or straight route when it encounters a
turnout. These ‘in-between’ steps have exactly one incoming and one
outgoing step.

• Each train needs exactly one schedule.

• Each schedule needs exactly one train.

2.1 Concrete Syntax

Notations in railway modelling are standardized. Please base yourself on
the notations used in the book “Railway Operation and Control”, by Joern
Pachl. The following image provides an idea of how a railway network looks
like:

Based on this notation, come up with a suitable icon for each element in
your language. Further requirements are listed below:

• Model an action that automatically “snaps” a segment when it is con-
nected to another segment.

• Display the direction in which junctions and turnouts are set.

• Display other useful information as you see fit (such as the name of
trains and stations).

3



3 Useful Links

• AToMPM main page: http://www-ens.iro.umontreal.ca/~syriani/
atompm/atompm.htm

• AToMPM user manual: https://msdl.uantwerpen.be/documentation/
AToMPM/

• AToMPM git repository: https://msdl.uantwerpen.be/git/simon/
AToMPM (includes installation instructions)

• Useful tutorials can be found on the ‘Tutorials & Demos’ page on the
main website.

4

http://www-ens.iro.umontreal.ca/~syriani/atompm/atompm.htm
http://www-ens.iro.umontreal.ca/~syriani/atompm/atompm.htm
https://msdl.uantwerpen.be/documentation/AToMPM/
https://msdl.uantwerpen.be/documentation/AToMPM/
https://msdl.uantwerpen.be/git/simon/AToMPM
https://msdl.uantwerpen.be/git/simon/AToMPM

	Practical Information
	Requirements
	Concrete Syntax

	Useful Links

