
Assignment 5

Code Generation

Simon Van Mierlo
simon.vanmierlo@uantwerpen.be

1 Practical Information

The goal of this assignment is to generate code for two different platforms.
The first is CPNTools, to do analysis on the Petrinet models resulting from
the translational semantics of the previous exercise. The second is Python,
by generating code that will actually create your modelled railway network
and all its elements. For this, a Python framework is provided.

Write a report that includes a clear explanation of your complete so-
lution, the modelling choices you made, as well as an explanation of your
testing process. Also mention possible difficulties you encountered during
the assignment, and how you solved them. You will have to complete this
assignment in groups of 2. Submit your assignment (report in pdf, abstract
and concrete syntax definition, example models, all rule-based model trans-
formations, and code generators) on Blackboard before Monday 5 December,
14:00h.

Contact Simon Van Mierlo (simon.vanmierlo@uantwerpen.be) if you
have a problem.

2 Prerequisites

Download this file: http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/
exported_to_md.zip and unzip it in your AToMPM folder. Overwrite the
default ‘exported to md’ that is already present. Also copy/paste your ver-
sion of metaDepth.jar in the ‘exported to md’ folder.

3 Requirements

This section lists the requirements for the code generation assignment. They
are split into two sections: one for CPNTools, and one for Python. Make
sure to provide test models for each part, demonstrating the functionality
you implemented!

1

simon.vanmierlo@uantwerpen.be
mailto:simon.vanmierlo@uantwerpen.be
http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/exported_to_md.zip
http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/exported_to_md.zip


3.1 CPNTools

For this part, three steps are involved:

1. Create realistic examples of railway networks on which you want to
perform analysis. Translate your models to Petrinets (using the model
transformation of the previous assignment), and export the generated
Petrinets models to metaDepth (using the provided exporter).

2. Write an exporter using the Epsilon Generation Language (EGL) that
exports the Petrinets model from metaDepth to CPNTools.

3. Perform analysis on the CPNTools model. Use the analysis to prove
whether, for a model with two trains, there is a way to schedule these
trains fully independently. This means that they will, on their way
from the start to the end station, never enter a segment that was
entered by the other train.

3.2 Python

This task also consists of three steps:

1. Export the railway metamodel and your example model(s) to metaDepth
(using the provided exporter).

2. Write an exporter using the Epsilon Generation Language (EGL) that
exports the railway model from metaDepth to Python.

3. Run the program! A visual interface will allow you to play the role of
the “control room”.

4 Manual

4.1 CPNTools

1. Generate your Petrinet model using your rule-based model transfor-
mation for denotational semantics.

2. Remove all traceability links and railway networks elements by closing
the respective toolbars.

2



3. Load the MetaDepth toolbar (inside of the /Toolbars/MetaDepth/
folder, it is called Export.buttons.model). This toolbar has two but-
tons: one for exporting models, and one for exporting metamodels.
For this part of the exercise, you will normally only need the first
one, as the exported PN metamodel is already present in the “ex-
ported to md” folder.

4. Click on the button for exporting models, and leave the name alone
(the exported model should be called “exported.mdepth”). Click OK.
This will generate a file with name “exported.mdepth” in the “ex-
ported to md” folder.

5. Write your EGL code in the file “generate cpntools.egl” (initially con-
tains only necessary global XML tags). This file should generate a
valid CPNTools model. For more information on CPNTools, see the
“Useful Links” section.

6. Tips for generating your CPNTools file:

• We do not use color in our Petrinets, so the type of tokens that
can appear in your places is UNIT, and a token is represented
by the value ().

• To get an idea of the format used by CPNTools, you can create
a simple Petrinet, save it somewhere, and open the file in your
favourite text editor.

• Identifiers should be unique, start with ID, followed by one or
more numbers.

3



7. To actually generate the .cpn file, execute the command “java -jar
metaDepth.jar < commandlist cpntools” inside of the “exported to md”
folder. This will generate a “exported.cpn” file.

8. Load the “exported.cpn” file in CPNTools, and perform your analysis.

4.2 Python

1. Using the MetaDepth toolbar, export your railway metamodel. You
do this by loading your metamodel (as a model), loading the toolbar
and clicking on the “Export MetaModel” button. In the input dialog,
write the name of your compiled metamodel (for example, “Railway”).

2. Export the model you want to generate code for using the “Export
Model” button. The exported model should be called “exported.mdepth”.

3. Write your EGL code in the file “generate python.egl” (initially empty).
This file should generate a valid Python file, which creates your rail-
way. For an example of a valid game file, look at “exported.py” file in
the Railway folder.

5 State Space Analysis in CPNTools

CPNTools allows you to generate the reachability graph for a given Petrinet.
First of all, open the State space tool, which will show the following palette:

Click the top-left button, and then click on your Petrinet. This will
calculate the reachability graph of the Petrinet, and allow you to perform
analysis.

CPNTools allows to query the reachability graph, and you will have to
create an appropriate query to decide whether the two trains in your model
can be scheduled independently. You can write the query as a string (text)
in CPNTools, and evaluate it as an ML expression. Documentation on the
functions you can use can be found in the following [PDF]. The easiest way
to go about this is to try and find a node in the reachability graph for which

4

http://cpntools.org/_media/documentation/manual.pdf


the condition is not satisfied: if such a node can be found, your query will
return it, and the trains cannot be scheduled independently. If no such node
is found, the trains can be scheduled independently. Use the SearchNodes
function, and use the Mark facility to check the markings of specific places
in the nodes of the reachability graph in the condition passed to your call to
SearchNodes. Please note that Mark has its limitations: it is not possible
to check the markings of all places without knowing their name. You have
to hard-code the name of the place as in Mark.exported‘myPlace 1 n
(‘myPlace’ cannot be a variable). This will probably force you to manually
adapt your query whenever another exported model is being checked. Please
explain the workflow for checking the condition on arbitrary railway models
in your report.

6 Useful Links

• Epsilon Generation Language Documentation: http://www.eclipse.
org/epsilon/doc/egl/.

• Epsilon book: [PDF]. For this exercise, you need chapter 7 on the
Epsilon Generation Language (EGL).

• CPNTools home page: http://cpntools.org/

• CPNTools state space manual: [PDF]

5

http://www.eclipse.org/epsilon/doc/egl/
http://www.eclipse.org/epsilon/doc/egl/
https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/plain/doc/org.eclipse.epsilon.book/EpsilonBook.pdf
http://cpntools.org/
http://cpntools.org/_media/documentation/manual.pdf

	Practical Information
	Prerequisites
	Requirements
	CPNTools
	Python

	Manual
	CPNTools
	Python

	State Space Analysis in CPNTools
	Useful Links

