
Sirius modeling tool use in electrical system
applications

Arkadiusz Rys

University of Antwerp, Belgium

Abstract

Sirius1 is an Eclipse project which is built on top of the Eclipse modeling

technologies to aid in designing a graphical modeling workbench. A user can

create meta-models and models on top of these meta-models which can then

be used to validate whether constraints are met or even generate code. Sirius

has the added benefit of allowing users to work directly within the graphical

representation of the generated models. [1] The goal of this paper is to create

an overview of the functionalities of Sirius and compare it to other known

modeling tools. We will do this and show how Sirius is applicable to the design

of electrical systems.

Keywords: Model-Driven Engineering, Sirius, Eclipse modeling Framework,

Electrical Systems

1. Introduction

Sirius is a Model Driven Engineering tool developed by Obeo and Thales

with the help of the community. It is a graphical tool where the user can

edit the properties of diagrams and other visualizations within the visualization

itself. As Model Driven Engineering can be used to develop domain specific5

applications where the representation can be used by a domain expert, it lends

itself greatly for the case of designing complex electrical systems.

Email address: Arkadiusz.Rys@student.uantwerpen.be (Arkadiusz Rys)
1Siriuscanbefoundathttp://www.eclipse.org/sirius/

Preprint submitted to University of Antwerp December 15, 2016

Sirius can be found at http://www.eclipse.org/sirius/


Section 2 will elaborate more on the details of the architecture on top of

which Sirius is based. The many features and capabilities of Sirius will be

presented in section 3 with a comparison between Sirius and AToMPM fol-10

lowing in section 4. Section 5 explains how we will apply Sirius to our problem.

Section 6 finally concludes.

2. Architecture

Figure 1: Sirius architecture model overview.

Eclipse. Sirius is built on top of the eclipse platform as seen in Figure 1.2

Eclipse is rather extendable and Sirius acts like a plugin in this system. This15

allows us to extend the functionality of Sirius by installing more Eclipse plugins

which could aid in Model Transformations or code generation.

Eclipse modeling framework. Sirius is not built directly on top of Eclipse, EMF

or the Eclipse modeling framework connects the two. EMF is used to design

the ecore meta-models. Editors can be generated to edit stored data textually20

2https://www.eclipse.org/sirius/doc/developer/Architecture_Overview.html

2

https://www.eclipse.org/sirius/doc/developer/Architecture_Overview.html


and Sirius extends these capabilities by allowing to edit the data within the

diagrams themselves. The EMF layer is where model transformations happen.

Split. At the highest level you can see how the Sirius Tooling is split from

the Sirius Runtime which interprets the models. This has the advantage of a

smaller package for the end users, which will not have any of the tools needed to25

edit the underlying structure. The Sirius runtime is where the end-user would

interact with the models.

This is not the only way Sirius splits its architecture. The core is also

split from any dialect specific extensions like diagrams or trees. This way, more

dialects can be developed by third parties just by accessing Sirius’ API.30

Another optimization happens when models are updated. Sirius uses a

refresh algorithm which is incremental and therefore only the changes are prop-

agated to the model, this results in them being available to be viewed immedi-

ately.

Graphical modeling Framework. Sirius uses the GMF or Graphical modeling35

Framework notation and runtime. The internal model is computed from the

designed domain- and specification model. Then the Sirius internal diagram

model is used as the semantic model for the notation model. GMF tooling

was used to initialize the GMF code to manipulate the internal Sirius diagram

model but now the generated code and GMF tooling are not used anymore.[2, 3]40

3. Capabilities

Sirius support five representations out of the box:

• Diagrams

• Sequence Diagrams

• Tables45

• Trees

3



• Properties view

The difference with AToMPM is how Sirius has more than only diagrams.

Sirius allows us to have a combination of these representations in a single

project, you can even have multiple represenatations of the same type.50

3.1. Diagrams

Diagrams are very versatile. In Sirius they have quite a lot of options so we

will cover a few.

Figure 2: Example of a diagram in Sirius.3

Layers. Diagrams can have one or more layers which can be independently

shown or hidden. In these layers we can define graphical representation which55

will be mapped onto elements.

Styling. Every aspect of the diagram can be styled. Styles can be conditional.

For example: weighted edges with a weight higher than 5 can be turned red.

3https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html

4

https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html


Tools. We can also define tools which will be available to the user. These can

be used on the representation or be defined to happen on a specific event like60

the reconnecting of an edge.

Filters. Defining filters, which will hide or show elements matching specific

conditions is also possible. This gives the designer more choice than disabling

whole layers of elements.

Validation. The model can be validated when required. Rules have to be set65

before the validation can take place which is comparable to the way global rules

are defined within AToMPM.

More options are available within the framework as it is meant to be able to

encompass any design compatible with the EMF core.

3.2. Tables70

Figure 3: Example of an edition table in Sirius.4

4https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html

5

https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html


Sirius allows to define tables. These give us the option of editing the data

within a table which at times will be faster than fiddling with a diagram. We

have two types of tables within Sirius.

(1) The Edition Tables behave just like any old regular table would, the column

header mappings will be some (computed) attribute.75

(2) The Cross Tables are a special kind of tables which are optimized to repre-

sent relationships between elements. Both the columns and row headers will

represents elements with the corresponding cell checked when a relationship

between them exists.

3.3. Trees80

Figure 4: Example of a tree view in Sirius.5

Tree views are the hierarchical views you can see all throughout Sirius within

its own editing windows. The items within these are created lazily however they

5https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html

6

https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html


are not deleted implicitly.

3.4. Overview

Users familiar with Eclipse will recognize the layout of the Sirius workbench.85

As Sirius allows many views or representations of the same data we can edit

the data in any them and the changes will propagate. This allows the designer

to open both views at the same time and monitor whether the changes in one

view have the desired effect on the others.

Figure 5: The interface the end-user would see for diagram editing.6

Whenever the end-user manipulates the models, he does so in a simpler view.90

This view is the one the end user would get for a diagram. The canvas in the

center (orange) is where they would create and edit their model. The palette

(red) shows what they have at their disposal (the tools and elements we defined)

and at the top in the menu (green) we have some general options. The behavior

when they add, delete or perform any other operation is also defined by the95

person who designed the model.

4. Comparison

As Sirius is a graphical modeling tool its best to compare it to other tools in

the same category. This is why we have chosen to compare it with AToMPM.

The distributed nature of AToMPM[4] versus the Eclipse based Sirius is hard100

to compare as both have their qualities.

6https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html

7

https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html


Sirius has the advantage of a well established platform with a huge user base.

Extending Sirius’ functionality can be done by installing additional Eclipse

plugins or by creating new types of representations using the exposed API. A

different approach has been taken in AToMPM where extending functionality105

can be done by defining additional models.

When you know your way around the many properties and menus of Sirius,

it is quite easy to edit models in a fast way thanks to the table representations

while the singular diagram view can make this harder in AToMPM.

The way Sirius is designed makes it a little bit harder to get your first110

model. This only applies when you don’t have experience using the Eclipse

Runtime Configurations.

While the tools differ in the previously mentioned properties they both make

a distinction between abstract and concrete syntax. A lot happens behind the

scenes in both tools, AToMPM will the the RAMification for you and Sirius115

can automate other properties like layouts. So there is definately a level of

automation in both tools. The quality of visual notation is highly dependable

on the user or creator of the models rather than relying solely on the tool itself.[5]

5. Case study

Applying the power of modeling to electrical systems. More specifically home120

installations as they lend themselves to be modeled quite easily.

8



Figure 6: A simple representation for an electrical wiring system.

Electrical installations consist of many connected components which could

all be modeled within Sirius. These include, but are not limited to: cables,

switches and outlets.[6] Sirius is the appropriate tool for the job because of the

ease of multiple representations. This allows us to have a view which corresponds125

to the official notation and one which is more life-like. Tables can be used to

summarize the system in questions and view its properties element-wise.

Formal standards exists to validate whether a system is up to specifications,

the A.R.E.I[4]. Requirements could be collected from these standards and im-

plemented directly into the model checking utilities.130

Examples of possible things to check.

• Cable colors: Certain cable colors are prohibited while others are reserved

for a special application only.

6Imagefromhttp://riwatt.be/wp-content/uploads/2016/06/scheme1.jpg

9

Image from http://riwatt.be/wp-content/uploads/2016/06/scheme1.jpg


• Short circuits.

• Allocated distribition points per wire.135

• Fuse ameprage.

Here we also have quite a lot more options.

The last part of the case study would involve model transformations and/or

code generation. We could create a simulator to simulate actions and reactions,

convert the system to a different formalism so it can be analyzed, convert it to140

different wiring systems (Centralized, decentralized) or perform cost optimiza-

tion.

6. Conclusion

In conclusion we can see how Model Driven Engineering tools can be used

to grahically model complex systems. We have explored some aspects of Sirius145

and are now more awre of the choices available to us when in need of a graphical

modeling tool. We also have explored how Sirius can be used in the specific

case of modeling electrical systems.

References

[1] Sirius.150

URL http://www.eclipse.org/sirius/

[2] M. Porhel, Sirius Forum.

URL https://www.eclipse.org/forums/index.php/t/1070145/

[3] M. Porhel, Sirius Documentation.

URL https://www.eclipse.org/sirius/doc/developer/Architecture_155

Overview.html

[4] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. V. Mierlo, H. Ergin,

Atompm: A web-based modeling environment.

10

http://www.eclipse.org/sirius/
http://www.eclipse.org/sirius/
https://www.eclipse.org/forums/index.php/t/1070145/
https://www.eclipse.org/forums/index.php/t/1070145/
https://www.eclipse.org/sirius/doc/developer/Architecture_Overview.html
https://www.eclipse.org/sirius/doc/developer/Architecture_Overview.html
https://www.eclipse.org/sirius/doc/developer/Architecture_Overview.html
https://www.eclipse.org/sirius/doc/developer/Architecture_Overview.html


[5] A.-V. vzw, A.R.E.I Vincotte.

URL http://www.epc-platform.be/files/arei-beknopt-vincotte.pdf160

[6] B. . Decker, The complete guide to wiring, sixth Edition, Cool Springs Press,

2014.

11

http://www.epc-platform.be/files/arei-beknopt-vincotte.pdf
http://www.epc-platform.be/files/arei-beknopt-vincotte.pdf

	Introduction
	Architecture
	Capabilities
	Diagrams
	Tables
	Trees
	Overview

	Comparison
	Case study
	Conclusion

