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Statecharts

e perfect for modelling timed discrete-event
systems

e not suitable for complex user interfaces*

creation of extended formalisms

*:Hans Vangheluwe et al., SCCD: SCXML Extended with Class Diagrams




Interactive Object Graph*

e designing of widgets user interface
e extends Statechart syntax with new nodes and arcs
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*:David Carr et al.,using interaction object graphs to specify graphical widgets, University of Maryland, 1994




e and defines a new way for describing transitions:
© BNS: booleans, numbers and strings
points: ordered pair of number
region: set of points
icon: region with a graphical representation
view port: region with a mapping function for underlying application data
window: groups all the objects in hierarchic levels
user input: M@, MA, AM, Mv, M", in[region], ~[region], [region]~
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lack of being able to prototype and
directly test the specification

need for a model
transformation that allows to
draw the widgets and directly
execute them

Metamodel A Metamodel B

[

conformant to /
instance of

conformant to /
instance of

F———— >

Model a . Model b
model
transformation




SCCD

combines Statechart and Class Diagram Formalisms

fills the software complexity gap

adds structural object-oriented expressiveness

concrete syntax in SCCDXML OHuEEl

|

Vehicle

System structure = Classes _ _
NMonMotorVehicle  MotorVehicle

System behaviour » Statechart l /\

Bicycle Truck Automobile
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mapping elements from
both the formalisms

Implementation

LHS

RHS
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transformation rules



e Scheduling of the rules

e code generation and
widgets testing
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*:Pieter Aerts,Domain-Specific Modelling of complex User Interfaces, University of Antwerp, 2015




Implementation

let's focus on the Behavior
implementation of a
Drag Icon widget

Example Slider Regions

|
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ActiveArea

Dragld




create a starting point

__pMetaStatelcon
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creation of the states
XOR ®m) composite state

nodes
icon normal state

start =) isStart attribute
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creation of the transition

e arcs between nodes and e the new transition has the display
metastates and event attribute set as the
e only with control arcs condition




setting the actions

¥ i . .
creates inside the

class the methods for

GW#O xd setting the attribute

the method is called as v

action when the

transition is triggered
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The final resultis a SCCD
diagram, i.e. a class
diagram whose behaviour
is encapsulated in a
statechart




exporting the model

Draglcon
behavior




...and finally

7E th

L belo Tamiert |

"'_!.'"’_-"."T:i"“'—r_i“




