Domain-Specific Modelling of
complex User Interfaces

Corrado Ballabio
University of Antwerp - 16/12/16

Statecharts

e perfect for modelling timed discrete-event
systems

e not suitable for complex user interfaces*

creation of extended formalisms

*:Hans Vangheluwe et al., SCCD: SCXML Extended with Class Diagrams

Interactive Object Graph*

e designing of widgets user interface
e extends Statechart syntax with new nodes and arcs

[:I Standard State f g |
@ History States

Display State

—-

00 O MGt AND Meta-state
00

Start State

Condition eveq;\name Condition datﬂaiue
<& > o) >
Event Arc Data Flow Arc

*:David Carr et al.,using interaction object graphs to specify graphical widgets, University of Maryland, 1994

e and defines a new way for describing transitions:
© BNS: booleans, numbers and strings
points: ordered pair of number
region: set of points
icon: region with a graphical representation
view port: region with a mapping function for underlying application data
window: groups all the objects in hierarchic levels
user input: M@, MA, AM, Mv, M", in[region], ~[region], [region]~

O O O O O O

67 Length 292

0 450

Acltress : Azmi, Shabana

AB C DFGHKLM PRS TWZ

i

|
(]

Ny

i |

L
¥l
B

|
0
o

(UL 1

) £
Iy

{

Ul

TEXTPRTEXE TI i

lack of being able to prototype and
directly test the specification

need for a model
transformation that allows to
draw the widgets and directly
execute them

Metamodel A Metamodel B

[

conformant to /
instance of

conformant to /
instance of

F———— >

Model a . Model b
model
transformation

SCCD

combines Statechart and Class Diagram Formalisms

fills the software complexity gap

adds structural object-oriented expressiveness

concrete syntax in SCCDXML OHuEEl

|

Vehicle

System structure = Classes _ _
NMonMotorVehicle MotorVehicle

System behaviour » Statechart l /\

Bicycle Truck Automobile

a

SportsCar Limousine

mapping elements from
both the formalisms

Implementation

LHS

RHS

5 R

GEER =

transformation rules

e Scheduling of the rules

e code generation and
widgets testing

Previous work

e Vs g
1 &4 i .
I H i
i H]
| i
| H |
! i
I i
B i i ;
i
, h i |
//] H '
" out T In i]
H { H '
/ H i / } |
= i |
it SR
check StatesHaveNames on validate sl v g e T ANDieon T
check ObjectsHaveNames on validate
check PosttiveDimensions on validate
check PathsAreSet on validate
T T
T T T
T0GObject - & *
e
I Contrelbel ik DataFowieL ik Bantl by
- N et el
Foint - e [E—
4 |whdth
—Lkocation | *
N
A
Toon + el bk ENARALRNCELITK HasSshaicud ik

*:Pieter Aerts,Domain-Specific Modelling of complex User Interfaces, University of Antwerp, 2015

Implementation

let's focus on the Behavior
implementation of a
Drag Icon widget

Example Slider Regions

|
N tcivenres

ActiveArea

Dragld

create a starting point

__pMetaStatelcon

5
Behavi gur @f

@ |

creation of the states
XOR ®m) composite state

nodes
icon normal state

start =) isStart attribute

(

creation of the transition

e arcs between nodes and e the new transition has the display
metastates and event attribute set as the
e only with control arcs condition

setting the actions

¥ i . .
creates inside the

class the methods for

GW#O xd setting the attribute

the method is called as v

action when the

transition is triggered

E |magé : s.ﬂnnﬂ =

The final resultis a SCCD
diagram, i.e. a class
diagram whose behaviour
is encapsulated in a
statechart

exporting the model

Draglcon
behavior

...and finally

7E th

L belo Tamiert |

"'_!.'"’_-"."T:i"“'—r_i“

