MDE Reading Report:
Domain-Specific Modelling of complex User Interfaces

Corrado Ballabio

corrado.ballabio@student.uantwerpen.be - c.ballabio9Q@Qcampus.unimib.it
University of Antwerp - University of Milano Bicocca

Abstract

This paper will present a couple of extended version of Statechart diagrams,
hybrid languages that are capable to model complex user interfaces at a
detailed level, with a brief explanation of the added elements and the ca-
pabilities of them. It will start explaining the syntax and the semantic of
Interactive Object Graph, that includes special kind of nodes and relations
for designing graphical widgets. Then it will introduce a mapping to SC-
CDXML, that merges Statechart and Object Oriented features for a rapid
prototyping of models.

Keywords: Statechart, IOG, user interface, SCCDXML, model
transformation

1. Introduction

Statechart formalism has the ability to model complex, timed, interactive
discrete-event systems in an incredibly efficient way, but their expressiveness
could be limited. For this reason they are not suitable to model applications
with higher behavioural complexity. For overcoming this limit some hybrid
version of it has been implemented, merging different formalisms in order to
achieve a wider range of modelling capabilities. In this paper two extended
version are presented: 110G and SCCDXML. The goal of this paper is to
create a tool that starting from a user interface specification will generate
code and allow a valid testing through a model transformation between I0G
and SCCDXML.This will be implemented with AToMPM modelling environ-
ment.

Chapter 2 will present Interactive Object Graph method, introduced by

Preprint submitted to Elsevier December 15, 2016

David Carr, and briefly explain its features. Chapter 3 will motivate the
need of mapping IOG into another formalism, and SCCD will then be intro-
duced. In chapter 4 future work will be exposed and then the last chapter,
the 5th will conclude this paper.

2. 10OG specification method

IOG (Interactive Object Graph) is a method for specifying user interfaces
with the help of an extended version of the Statechart Diagram formalism
introduced by David Carr in 1994. This extension was designed for widget
implementation, and adds special nodes for increasing IOG readability and
map user behaviour into the diagram. Main goals of the Interactive Object
graph are to create a basis for rapid prototyping, to design complex user
interfaces and to reduce the work required to design a user-computer dialog.
Carr only defined the syntax and the semantic of the item he added, showing
some example widget modelled with IOG. They will be now briefly explained:

2.1. New elements of the syntaz

IOG method introduces some new states, meta-states and special arc
types. Meta-states are particular objects that can contain multiple normal
states or other meta-states. For avoiding the arc explosion problem, all the
transitions that start from meta-states are inherited by the internal ones.
Here the new nodes are briefly explained:

¢ XOR meta-state: contains a sequential transition network in which

only one state is active.
DD XOR Meta-state
00

e AND meta-state: can contain more then one transition network, and
each one of them is executed in a parallel way.

@ AND Meta-state

e History states: there are two different types, differing each other in
the way that treat a return when last active state was a meta-state.The
H state restarts meta-states at their start state and provides one level
of history; the H* state restarts meta-states at their history state when
they have one thereby allowing multilevel history. History states can
only be contained in XOR meta-states, and they help to avoid states
explosion.

History States

®
®

e Display state: are represented in parallelograms and are control state
that have a change in the display associated with them.

‘E Display State

e Data objects: they never get the control signal, they just represent
the storage of a data item. They are used in combination with Data
Flow Arcs: if an arc of that kind enters the node the data object is
updated, if it exits it represents a change in the value. An arc without
destination symbolize an externally readable data while an arc without
source represent an externally writeable data.

GenericWidget

Externally | [- - - -~ - - - """ @ -
Writable

Externally Readable

e Event arc: allows the designer to define messages, is represented with
a special transition passing through a letter E in a diamond shape.

Condition evenfname
&

Event Arc

2.2. IOG abstract model

Now that all the nodes that compose the Interaction Object Graph are
fixed, is necessary to understand how IOG abstracts interface and the dia-
logue between the user and the diagram.

A set of objects that can describe and discriminate the transitions between
states is now shown:

e BNS: boolean, number(both N and R are contained) and string values
are handled with the usual operations and correspond to the usual
meaning associated with them.

e Point: corresponds to an ordered pair of numbers and denote a spatial
coordinate. Values of a point variable p are assigned through the usual
notation p = (value_z, value_y) and can be accessed via dot notation
p.value_xr and p.value_y.

e Region: is a set of points on the display identified with the upper left
corner point, a coordinate pair named location. A couple of operators
are also defined for this element: region.size() returns the values of the
dimensions of the region, and region.in(point) is a boolean operator
that states if the value point belongs to the region or not.

e Icon: are simple regions that can display pictures or graphical repre-
sentations of other values. In addition to the region operators, icons
also have draw and erase operations, that show it on the display. It
is also possible to visualize a BNS value inside an icon: with the op-
erator icon(BNS_value, point_value, font, fontsize) BNS variables are
converted into a text representation with the specified font and size,
and then shown in the display inside an icon at the desired position.

e View port: is a region that has a mapping function associated for
some underlying application data. The mapping function works in two
steps: it first applies a conversion for a graphic representation and then
applies a projection that translates and scales the data onto the display.

e Window: they group all the objects illustrated so far into a stack,
adding a level attribute that gives a hierarchic order to each object.
Windows with lower level are at the top of the stack, so they cover all
the other overlapping windows that have higher levels.

e User input: play a central role in IOG, it is the mean with which the
user can interact with widgets. All the inputs are mapped into different
transitions, depending on the kind of action that has been performed.
Keyboard inputs have a string representation that indicates the key
event that triggers or the text that has been typed. Each mouse input
on the other hand has a special notation that characterizes the tran-
sitions. For getting the position, the change of the position and the
movement of the mouse pointer MQ, MA and AM notation are used.
Mv and M~ respectively indicate the press and the release of the click
button of the mouse. in/region/ returns if the mouse pointer is inside
a region, while ~ [region] and [region/~ are notations for the entering
and leaving of a region event.

2.3. Graphical widgets

With the IOG method that has just been illustrated, David Carr modelled
5 widgets for testing its possibilities. These widgets are a range-selection
slider, an alpha slider, a node-link tree viewer, a treemap viewer and a secure
toggle switch.

RangeSelector

Bacmrw:g

:mBoth::Buﬂon\ﬁewPoﬂ cMidSize
' @
/size ' /Iocaﬁon k chMidLoc 5
K < .
low::hSlidelndicator MidSize nhigh::hSIidelndicator
behavior ' behavior cOnhigh
D
""""""" 2’ -cOnlw\,""""""?'F
/Iocahon / / FreeArea : @ / location / . / Freefrea y
/ value / l /selected/ ' /selected/ ' / value /
lowselected_ | | . . _ . . _ e highselected] |- . . - . . .
(©cLowChg ' DragBoth ' (©@cHighChg
cLowVal j \(—) ' cHighvl
-low.selected | {/ don't drag ! -high.selected
=] \ Mv && in[mBoth] igh.clrz -

low.cDrag

DragBothCond = AM && in[mBoth] && (lowval > RangeMin) && (highval < RangeMax)

Figure 1: IOG implementation of a range-selection slider

3. IOG Transformation

Even if IOG formalism is not so recent (September 1994) it still lacks a
fundamental part. What is missing is a transformation model that allows
designer to draw user interfaces and then directly executing them for pro-
totyping purposes. For making it possible it is necessary to transform it
into another formalism and then generate code. A good candidate is SCCD
language, an hybrid that combines Statechart and Class Diagram filling the
software complexity gap and making possible to model complex graphical
user interfaces at a detailed level. Class Diagram adds the structural object-
oriented expressiveness that was missing without it.

3.1. SCCD

SCCD language models the structure of a system with the concept of an
object oriented class, and then associates it the definition of its behaviour
modelled as a Statechart diagram. Representation of such a language is done
with its concrete syntax colled SCCDXML. This is an extension of SCXML,
an XML-based markup language that provides a generic state-machine based
execution environment based on Harel statecharts. With the addition of
classes to the Statechart notation, is now possible to define attributes, rela-
tions with other classes and methods. Classes can be instantiated at runtime,
making possible to create more objects at the same time. The main respon-
sible for handling the instances is the Object Manager, it can create, delete,
start the execution and associate classes at runtime. Once completed the
SCCD model can be compiled in order to generate code for running applica-
tion, choosing between the three programming languages that are supported:
Javascript, Python and C# .

4. Future work

In a previous Model Driven Engineering project work, Pieter Aerts began
implementing IOG formalism with AToMPM tool, starting from the defini-
tion of abstract and concrete syntax. Abstract syntax defines entities of the
language, the relationships between them and also constraint on the val-
ues. Concrete Syntax creates a graphic visualization for each element of the
AS. InteractiveObjectGraph formalism allows to reproduce David Carr IOG
representation of widget in AToMPM environment.

XOR | (AND
ntrolArc Contains \, l_—f"——/
Node MefaState s
e — e
ExentAr 4 _
StartState e o Al B Behaviour
I 2 v} IS atedBy
/wm ; DataFlowArc
R 4 N
P ' N AN

e ! \ S
State 7 I < DataOby
[Flstory Ay BT > roaObject ' Exiemal Porl
e
- ‘ ‘ ’ N ’ 4 N

S
! \
| \
alDataFlowArc emabaFiowie
1 k \\
N
Wiiteable ! Readable " |

TOGOBject
e

.
/,, N,
' %
-7 \
Polnt Region)
Y |width
ocation
.
L
Icon !

Figure 2: Interactive Object Graph abstract syntax specification

Future work will focus on the next step of AToMPM implementation:
model transformation to SCCD. Each transformation rule is composed by a
Left Hand Side (LHS) that represents the matching pattern to find, and a
Right Hand Side (RHS), that contains the transformation to be made. Ad-
ditional Negative Application Condition (NAC) is optional, it corresponds
to the pattern condition not to be found to apply the transformation.

First step in the transformation is to map every element from the starting
formalism (IOG) to a correspondent one in the final formalism (SCCD). For
example every DataObject could be mapped into a class attribute, every
user input could be mapped into an event, and so on. Then all the pat-
tern matching condition need to be specified, together with the RHS. All
the rules will be linked in a schedule that determines the order with wich
the transformations will be applied in order to obtain the final transformed

(0¢]

model. Last step of the work will then be exporting the code and running the
widget application. This will make possible to perform analysis and testing
researches.

5. Conclusion

This paper explained the reason why an extension of Statechart formal-
ism is necessary when it comes to model complex grafical user interfaces at
detailed level. IOG and SCCD formalisms have been explained showing their
syntax and their main purposes. The final goal is to create a transformation
between these two languages and realise a working widget application.

