
Layout in Visual Modelling

Gitte Bluekens

University of Antwerp, Belgium
supervisor: S. Van Mierlo

Abstract

As part of a Model Driven Engineering course I decided to tackle visual modeling

in AToMPM. A lot of us like working with modeling languages. We want them to

be visually understandable, but we don’t want to spend time making our model

’pretty’. This paper will talk you through different layout algorithms and how

they can be implemented, specifically in a transformation rule in AToMPM.

Simply running one of these algorithms on your model will modify the vertices

to the visually best place on the canvas.

Keywords: Visual modeling, AToMPM, Spring-embedder, Force-transfer,

Tree-like layout, Circle layout

1. Introduction

The usefulness of visual modeling is dependent on how elements of a model

are visually arranged. Hence, any tool supporting visual modeling should pro-

vide some mechanisms to reduce the burden of drawing models with good lay-

outs. In this paper, I will discuss some automatic layer techniques implemented5

in the tool AToMPM.

AToMPM. ATOMPM is an acronym for ”A Tool for Multi-Paradigm Mod-

eling”. It is used for modeling, meta-modeling, and transforming models with

graph grammars. AToMPM allows language developers to create visual domain-

specific languages, and domain experts to use these languages. A language is10

defined by its abstract syntax in a metamodel, its concrete syntax(es), which

Preprint submitted to Elsevier January 29, 2017

define(s) how each abstract syntax element is visualized, and its semantics def-

inition(s), either operational (a simulator) or translational (by mapping onto a

known semantic domain). [1]

Modelling a Model Transformation in AToMPM. A model transformation con-15

sists of a set of rules that matches and rewrites parts of the model, and a

schedule that governs the order in which rules are executed. [1] For every lay-

out algorithm that I implemented in AToMPM, I created a new transformation

schedule which has the name of the algorithm. These schedules all look alike.

They only consist of one rule, a starting point and a success and failure point.20

The layout magic will happen in that one rule.

When creating a rule, it is initialized with the three basic components of every

rule: a Negative Application Condition (NAC), a Left-Hand-Side (LHS), and

a Right-Hand-Side (RHS). Visually, all the rules I wrote will look the same.

They don’t need the NAC, so I deleted this box in every rule. The Left-Hand-25

Side and Right-Hand-Side only contain one place (the same for both Left- and

Right-Hand-Side). This makes sure that every valid PetriNet will be matched

to this rule. The actual layout algorithm is implemented in the action part of

the Right-Hand-Side of the rule.

2. PetriNets in AToMPM30

I decided to implement visual layout algorithms for the PetriNet language.

This language consists of two vertices, namely Place and Transition, and two

edges, namely PlaceToTransition and TransitionToPlace. The PetriNet lan-

guage is available in AToMPM in the folder Formalisms/PN.

To be able to use this language, I first had to make some small adjustments.35

A Place or Transition in AToMPM, hereafter called vertex, is derived from the

Positionable class. This means that the vertex can be placed anywhere on the

canvas, and that the position of the vertex will change as the vertex changes

position on the canvas. However the Right-Hand-Side of a rule can only change

attributes of a vertex. Therefore I had to give the vertices an attribute ’position’40

2

in the PetriNet model. This attribute is mapped on the position of Positionable,

by using the mapper and parser functions of the PetriNet metamodel.

3. Spring-embedder algorithm

3.1. General algorithm

Algorithm 1 Spring-Embedder

1: Input: A Graph G = V, E

2: Output: An embedding of G

3: for all v in V do

4: v.forceVector = [0,0]

5: v.charge = chargeStrength * v.diagonalLength

6: end for

7: for i in range(0, 101) do

8: Repulsion(V)

9: Attraction(E)

10: Gravity(V)

11: for all v in V do

12: v.pos = v.pos + v.forceVector

13: v.forceVector = 0

14: end for

15: convergence check

16: end for

In the spring-embedder algorithm, edges are simulated as springs and ver-45

tices as rings to which the springs are attached to. It is fairly simple to im-

plement. To improve the convergence speed and quality of the final drawing,

a pre-processing step of circle layout or a random layout algorithm is recom-

mended.

The initialization step consists of setting 2D force vectors to zero for every ver-50

tex, and setting repulsion charges to prevent vertices from overlapping. They

3

are set to the diagonal length of each vertex, multiplied by the chargeStrength.

This variable can be adjusted by the user, I’ve chosen a default value of 2. Af-

ter the initialization, the forces acting on the vertices are repeatedly calculated.

This number of iterations is fixed to a default of 100 iterations. This means55

that the algorithm stops after 100 iterations, or if a convergence threshold is

triggered. The default convergence threshold is 10, since that number was ex-

perimentally found to work well. [2] I also implemented two forgiveness rounds

in the convergence check. This means that the maximum force must be less

than the threshold for three consecutive rounds to break out of the loop.60

3.2. Repulsion algorithm

The repulsion algorithm is responsible for avoiding the vertex overlaps. This

is done by generating large repulsive forces whenever two vertices overlap. Ini-

tially, this algorithm calculates the Manhattan and Euclidean distances between

the pair of vertices. We will weight off the impact of the force to a given thresh-65

old. If the distance between the vertices is large enough, the force will be

ignored to make the algorithm more efficient. In my implementation, I defined

the threshold as 100.

If the impact of the force is significant, a scalar force is calculated proportional

to the charges of the vertices and inversely proportional to the square of the70

distance separating the vertices. This force is used to alter the force vector of

the first vertex. If the Euclidean distance is less than 0.1, then the previously

calculated charge will simply be added to the force vector of the first vertex.

3.3. Attraction algorithm

The attractive algorithm first tries to find the Manhattan and Euclidean75

distances between the pair of vertices connected to a chosen edge. The distance

cannot be smaller than a chosen minimum distance to avoid precision and divide

by zero issues. In my implementation, I chose the value of minDistance to be

0.1. Next, the spring force is calculated using the physical equation for springs,

since the algorithm treats edges as physical springs. The springConstant is set80

4

Algorithm 2 Repulsion

1: Input: A set of vertices V

2: Output: Update force vectors for V

3: for all vi in V do

4: for all vj in V do

5: if vi 6= vj then

6: Calculate the Euclidean distance between vi and vj

7: Calculate the Manhattan distance vector using vi and vj

8: if abs(Euclidean distance) > threshold then

9: charge = vi.charge + vj .charge

10: if abs(Euclidean distance) > 0.1 then

11: force = charge / (Euclidean distance)2

12: vi.forceVector = vi.forceVector + (Manhattan distance

vector) * force

13: else

14: vi.forceVector = vi.forceVector + charge

15: end if

16: end if

17: end if

18: end for

19: end for

5

Algorithm 3 Attraction

1: Input: A set of edges E

2: Output: Update force vectors for vertices linked to E

3: for all e in E do

4: vs = e.getSource()

5: vt = e.getTarget()

6: if vs 6= vt then

7: Calculate the Euclidean distance between vs and vt

8: Calculate the Manhattan distance vector using vs and vt

9: if abs(Euclidean distance) < minDistance then

10: Euclidean distance = minDistance * sign(Euclidean distance)

11: Manhattan distance = minDistance

12: end if

13: force = springConstant * ((Euclidean distance) - idealSpringLength)

/ (Euclidean distance)

14: vs.forceVector = vs.forceVector + (Manhattan distance vector) *

force

15: vt.forceVector = vt.forceVector - (Manhattan distance vector) * force

16: end if

17: end for

6

to a value of 0.1 in the implementation, since it is proven that this value works

well across a wide range of graphs. The idealSpringLength is set to 100. If this

lenght is chosen to be a smaller value, the chances are bigger that there will be

overlapping vertices. [2] Finally, the computed spring force is multiplied by the

2D Manhattan distance vector and added to the force vector of one vertex, and85

subtracted from the other.

3.4. Gravity algorithm

Algorithm 4 Gravity

1: Input: A set of vertices V

2: Output: Update force vectors for V

3: barycenter = (
∑

v ∈ V v.pos) / | V |

4: for all v in V do

5: Calculate unit vector between v.pos and barycenter

6: v.forceVector = v.forceVector + unit vector * gravityStrength

7: end for

The gravity algorithm imparts upon each vertex a velocity towards the grav-

itational field source. This is determined to be the barycenter of all the vertices.

This algorithm will make sure that the area is used efficiently, and that the ver-90

tices are not spread over the entire canvas. In fact, the algorithm will yield

a circular drawing because of the two dimensional character of gravity. The

force vector imparted on each vertex is calculated as the unit vector between

the vertex and the barycenter. This vector is then multiplied by the strength of

the gravity field. A value of 10 for this strength is proven to work well for small95

sparse graphs. [2]

3.5. Analysis

The spring-embedder algorithm runs with a constant iteration amount. The

repulsion algorithm dominates the time complexity for each simulation iteration,

requiring O(|V|2) time. Since the attractive algorithm only uses O(|E|) time and100

7

Figure 1: Before Spring-Embedder algorithm

the gravity algorithm only uses O(|V|) time, the overall time complexity for the

spring-embedder algorithm is O(|V|2).

3.6. Reflection

There were some difficulties I encountered implementing this algorithm. The

most prominent one was the use of the Manhattan distance vector. I had never105

heard of this before and I couldn’t find any information on the internet. After

discussing this with my supervisor, I decided to take the Manhattan distance

and split it up in a vector. Since the Manhattan distance is calculated as

d(p, q) =| p1 − q1 | + | p2 − q2 |, I decided to interpret the Manhattan distance

vector as [| p1− q1 |, | p2− q2 |].110

I also had to adjust the pseudocode that I based my implementation on. [2]

In his paper, Dubé talks about the sign of the Manhattan vector. This didn’t

make much sense to me as in my opinion a vector doesn’t have a sign. Since

the Manhattan distance also only uses absolute values, I decided to always in-

terpret this sign as positive. Furthermore, I made some small adjustments to115

the pseudocode to make it more understandable.

8

Figure 2: After Spring-Embedder algorithm

120

4. Force-transfer layout algorithm

The force-transfer drawing technique consists of a an initialization phase

and a simulation phase. The initialization phase sets the forces acting on each

vertex to zero. In the simulation phase, each vertex exerts forces on overlapping125

neighboring vertices. These forces are calculated in the calculateForce function.

We start by calculating the unit vector and Euclidean distance between the pair

of vertices. Then, a scalar force magnitude is computed. In this computation,

we speak of minSeparation, namely the minimum separation that we expect be-

tween two vertices. I chose this value to be 50 in my implementation. There is130

also the variable separationForce, which I chose to be 1 in the implementation.

The direction of the force is determined by the greatest separating distance be-

tween the vertices, so the vertices are moved as little as possible. This means

that the vertices will only move vertically or horizontally. The simulation ter-

minates once the forces have pushed all vertices apart such that no overlap135

9

Figure 3: Before Spring-Embedder algorithm

Figure 4: After Spring-Embedder algorithm: Force-transfer layout is needed

10

Algorithm 5 Force Transfer

1: Input: A graph G = (V, E)

2: Output: An embedding of G

3: for all v in V do

4: v.forceVector = 0

5: end for

6: for all i in range(0, 51) do

7: isMoving = False

8: i = 0

9: j = 0

10: while i <| V | do

11: while j <| V | do

12: if i 6= j then

13: isMoving = calculateForce(vi, vj)

14: end if

15: j = j + 1

16: end while

17: i = i + 1

18: j = i

19: end while

20: if not isMoving then

21: break

22: end if

23: for all v in V do

24: v.pos = v.pos + v.forceVector

25: v.forceVector = 0

26: end for

27: end for

11

Algorithm 6 CalculateForce

1: Input: A pair of vertices, vi, vj

2: Output: Update force vectors for vi and vj

3: [ux, uy] = the unit vector between vi and vj

4: dx = ux
-1 * (((vi.width + vj .width) / 2) + minSeparation)

5: dy = uy
-1 * (((vi.height + vj .height) / 2) + minSeparation)

6: forceMagnitude = separationForce * (Euclidean distance - min(abs(dx),

abs(dy)))

7: if forceMagnitude < -1 then

8: if abs(ux) > abs(uy) then

9: vi.forceVector.x = vi.forceVector.x + (ux * forceMagnitude)

10: vj .forceVector.x = vj .forceVector.x - (ux * forceMagnitude)

11: else

12: vi.forceVector.y = vi.forceVector.y + (uy * forceMagnitude)

13: vj .forceVector.y = vj .forceVector.y - (uy * forceMagnitude)

14: end if

15: return True

16: end if

17: return False

12

remains. This is checked by using the isMoving variable. The simulation can

also be ended by a fixed number of iterations.

4.1. Analysis

The first loop of the force-transfer algorithm is bounded by O(|V|), the inner

loop is bounded by O(50*|V|2) and the last loop is bounded by O(50*|V|). This140

means that the overall time complexity of the force-transfer algorithm is O(|V|2).

4.2. Reflection

The Force-Transfer layout algorithm is an algorithm that will make sure that

there are no overlapping vertices in the canvas. This makes it particularly useful

to run this algorithm after running a first algorithm that does not care about145

overlapping. It also means that the algorithm itself is not very hard to under-

stand. It will simply increase the distance between vertices whenever necessary.

When testing this algorithm, I found that it only works well with small PetriNets.

I don’t think that it has anything to do with the algorithm itself, but it’s more an

issue in AToMPM. It takes very long to run the algorithm for a bigger PetriNet150

and this will eventually lead to AToMPM not responding anymore. I wasn’t able

to solve this problem, but the effects of the algorithm can be seen in smaller

PetriNets.

155

5. Cirle layout algorithm

The circle layout algorithm is best used on subgraphs or small graphs. It

makes an excellent preprocessing step for a force directed method such as the

spring-embedder algorithm.160

In the circle layout algorithm, all vertices are first sorted topologically. I did this

intuitively by writing an algorithm that checks for every vertex if it is already

marked sorted. If it is not, it will be the next topologically sorted vertex followed

13

Figure 5: Before Force-Transfer algorithm

Figure 6: After Force-Transfer algorithm

14

Algorithm 7 Circle

1: Input: A graph G = (V,E)

2: Output: An embedding of G

3: Obtain a topological sort of V

4: perimeter = 0

5: for all v in V do

6: v.boundingCircleDiameter = sqrt(v.width2 + v.height2) + offset

7: perimeter = perimeter + v.boundingCircleDiameter

8: end for

9: diameter = perimeter / π

10: interval = v| V | -1.boundingCircleDiameter / (2 * perimeter)

11: for all i in range (0, len(V)) do

12: x = diameter * (1 - sin(interval * 2π))

13: y = diameter * (1 - cos(interval * 2π))

14: vi.pos = [x, y]

15: if j 6= len(V)-1 then

16: interval = interval + ((vi.boundingCircleDiameter +

vi+1.boundingCircleDiameter) / (2 * perimeter))

17: end if

18: end for

19: end for

15

by its children until no children are left. Only then the next vertex is checked.

The next step is then to calculate the perimeter of the circle. This calculation165

uses an offset value to make sure that there is room left for edges. The larger

you choose this value to be, the further the vertices will be positioned from each

other.

Finally, an interval fraction is calculated between 0 and 1. This interval will

become the radian angle used to calculate the vertex positions on the circle.170

5.1. Analysis

Since all steps of the circle algorithm are done in linear time, the algorithm

has a linear overall run-time.

5.2. Reflection

Personally, I think this algorithm gives a very nice result. There is no over-175

lap between the vertices and all of them are evenly spaced over the canvas. By

first sorting the vertices topologically, it is made sure that there is as little as

possible edge overlapping.

There were some slight changes that I had to make to the pseudocode of Dubé to

get a working algorithm. [2] The most prominent change is situated in the sec-180

ond for-loop. Where Dubé chooses to loop from 1 to len(V), I chose to loop from

0 to len(V). Starting from 1 results in the first vertex not changing place. This is

not desirable. I also made use of an extra if statement. Dubé didn’t make use of

this statement, which resulted in a failure to get vi+1.boundingCircleDiameter

since vi+1 does not exist.185

6. Tree-like algorithm

The tree-like layout algorithm gives good results on graph structures that

are really trees.190

The first step of the algorithm is to find all the root vertices in the graph. This

16

Figure 7: Before Circle-like layout algorithm

Figure 8: After Circle-like layout algorithm

17

Algorithm 8 Tree-like

1: Input: A graph G = (V,E)

2: Output: An embedding of G

3: R = findRootVertices(V)

4: maxHeight = maximum height of all root vertices

5: xpos = 0

6: ypos = 0

7: for all r in R do

8: w = 0

9: for all v in r.getChildren() do

10: w = layoutNode(v, xpos + w, ypos + yoffset + maxHeight) + xoffset

11: end for

12: r.pos.x = xpos + (w / 2) - (r.width / 2)

13: r.pos.y = ypos

14: end for

is done by the findRootVertices function. This function simply checks if a ver-

tex has an incoming edge. If not, this means that the vertex is a root, and all

children of this vertex are considered not to be roots. If after this loop there

are still vertices left unmarked, this means there is a cycle in the vertices. We195

then pick a random vertex as root and mark all children until all vertices are

marked.

A recursive process is then started to assign the children of each root vertex

coordinates before the root itself. This is done in the layoutnode function. The

algorithm is designed to assign vertices with no children coordinates immedi-200

ately, and vertices with children make the recursive call.

6.1. Analysis

Since all steps of the tree-like algorithm are done in linear time, the algo-

rithms has a linear overall run-time.

18

Algorithm 9 FindRootVertices

1: Input: A set of vertices V

2: Output: A set of root vertices R

3: R = []

4: for all v in V do

5: if v has no incoming edges then

6: R.append(v)

7: mark all children of R as not root

8: end if

9: end for

10: for all v in V do

11: if not v.marked then

12: R.append(v)

13: mark all children of R as not root

14: end if

15: end for

19

Algorithm 10 LayoutNode

1: Input: A vertex v, xpos coordinate, ypos coordinate

2: if not v.hasChildren() then

3: v.pos.x = xpos + ((v.width + xoffset) / 2) - (v.width / 2)

4: v.pos.y = ypos

5: return v.width

6: else

7: w = 0

8: h = v.height + yoffset

9: for all vchild in v.getChildren() do

10: w = layoutNode(vchild, xpos + w, ypos + h) + xoffset

11: end for

12: v.pos.x = xpos + (w / 2) - (v.width / 2)

13: v.pos.y = ypos

14: return w - xoffset

15: end if

20

6.2. Reflection205

This algorithm is the first one I tried to implement in AToMPM. I thought

it would be the easiest one, but it actually turned out to be the hardest one.

The algorithm uses recursion to assign coordinates to the children of a vertex

before assigning coordinates to the vertex itself. It is however undesirable to use

recursion in the AToMPM rules. I tried rewriting the algorithm to work with210

loops instead of recursion, but I wasn’t able to complete this algorithm. Since

I did complete the findRootVertices function and a good part of the rest of the

algorithm, I decided to explain the algorithm here anyway.

7. Conclusion

I really liked working on this project. Since everything you do gives a visual215

result, it was very satisfying to see the algorithms come to life. The thing left

to do is fixing the edges. AToMPM does not support altering the begin or

end position of an edge. Changing the position of the edge itself doesn’t give

a proper result either. Off course, it is possible to change the position of the

edges after running the algorithm, but this is not desirable since it is often not220

clear anymore which edge belongs to which vertices. It is left to the reader to

find a good way to modify the edges inside the algorithm.

References

[1] R. Mannadiar, S. V. Mierlo, H. Ergin, C. Hansen, E. Syriani, J. Corley,

Atompm documentation, https://msdl.uantwerpen.be/documentation/225

AToMPM/ (2016).

[2] D. Dubé, Graph layout for domain-specific modeling (2006).

21

https://msdl.uantwerpen.be/documentation/AToMPM/
https://msdl.uantwerpen.be/documentation/AToMPM/
https://msdl.uantwerpen.be/documentation/AToMPM/

	Introduction
	PetriNets in AToMPM
	Spring-embedder algorithm
	General algorithm
	Repulsion algorithm
	Attraction algorithm
	Gravity algorithm
	Analysis
	Reflection

	Force-transfer layout algorithm
	Analysis
	Reflection

	Cirle layout algorithm
	Analysis
	Reflection

	Tree-like algorithm
	Analysis
	Reflection

	Conclusion

