
Layout in Visual Modelling

Gitte Bluekens

University of Antwerp, Belgium

Abstract

This reports is a summary of the section ’Graph Drawing Technique Imple-

mentations’ of the master thesis of Denis Dubé. [1] The first section will talk

about the layered drawing technique. The second section will talk about the

Spring-embedder algorithm. The third section covers the Force-transfer layout

algorithm, and we end the paper with the tree-like and circle layout algorithm.

These algorithms are discussed on how they work and for which models they

are best used.

Keywords: Visual modeling

1. Introduction

The usefulness of visual modeling is dependent on how elements of a model

are visually arranged. Hence, any tool supporting visual modeling should pro-

vide some mechanisms to reduce the burden of drawing models with good lay-

outs. In this paper, we will discuss some automatic layer techniques imple-5

mented in the tool ATOM3. We won’t go into the implementation details, but

we will discuss how these techniques work. To communicate with ATOM3 and

the layout methods, an abstraction layer was designed. This gives us the advan-

tage that all layout algorithms can be isolated from the internal data structures

of the ATOM3 tool.10

ATOM3. ATOM3 is an older version of the tool now known as ATOMPM.

Where ATOM3 is an acronym for ”A Tool for Multi-formalism Meta-Modeling,

ATOMPM is an acronym for ”A Tool for Multi-Paradigm Modeling”. It is used

Preprint submitted to Elsevier December 14, 2016

for modeling, meta-modeling, and transforming models with graph grammars.

ATOM3 has the ability to transform a model in one formalism to another for-15

malism using visual graph grammars. Once these grammars are created, any

traffic model can be automatically transformed.

abstraction layer design. An abstraction layer was built to communicate be-

tween ATOM3 and the automatic layout methods. This layer was constructed

to reduce the implementation complexity of the automatic layout models. The20

functionality of the layer is to extract position information from the vertices

and edges from ATOM3 so that when the layout method is run, new position

information can be sent back to the ATOM3 entities.

2. Layered drawing technique

The layer drawing technique is excellent for visualizing graphs with a hier-25

archical structure. It partitions vertices into layers and finds good positions for

the vertices within those layers. Edges are then drawn in between the vertices.

A layer technique consists of two phases. The first phase is the layer assign-

ment. This phase combines the greedy cycle removal algorithm with a layering

algorithm. For example, D. Dubé implemented the BFS layering, longest-path30

layering, and minimum width layering[1]. The second phase is crossing reduc-

tion.

2.1. layer assignment

greedy cycle removal. The greedy cycle removal orders the vertices according to

depth first search discovery order. The algorithm visits each vertex and if the35

child vertex has an order less than its parent, it will be given a flag so that they

can be drawn in their original direction. The greedy cycle removal provides no

performance guarantees.

BFS layering. BFS layering starts by finding the root vertices, on which the

breadth first search algorithm is applied. All the discovered vertices are labeled40

2

the next layer. This method is applied recursively until no more vertices remain.

This layering technique will place vertices at their graph theoretical distances

from their root vertices. BFS layering yields optimal height, but unbounded

width.

longest-path layering. The longest-path layering technique starts by layering45

the leaf vertices at layer 1. Then vertices are added to successive layers if all

their children are in layers below them. This results in the opposite of the BFS

layering algorithm. Longest-path layering yields optimal height, but unbounded

width.

minimum width layering. The minimum width layering is excellent at yielding50

drawings with good aspect ratios, but it tends to create longer edges that tra-

verse multiple layers. It is based on the longest-path layering algorithm, but

adds an additional step that connects all unconnected vertices and places them

in the first or last layer.

2.2. Crossing Minimization55

Layer-by-layer sweep. Layer-by-layer sweep is very important for both the qual-

ity and running time of the crossing reduction phase. We need a deterministic

and converging heuristic to be able to fulfill the stopping condition of the sweep.

We will be using the barycenter heuristic for this purpose. However, we will not

go in more detail about heuristic algorithms. The layer-by-layer sweep stores60

the current best ordering of the vertices, as compared to the best number of

crossings seen thus far. The algorithm halts on one of the following conditions:

a hard limit on the number of rounds or iterations of the outermost loop, the

algorithm has not reduced the crossings for a certain number of consecutive

rounds, or, no crossings remain in the layered graph.65

2.3. Analysis

It is difficult to analyze the running time of the crossing minimization phase.

Crossing minimization is already a NP-hard problem with just two layers of

3

vertices. The problem is made even worse by the requirement of proper layering,

which introduces a large number of dummy vertices where multi-layer traversing70

edges occur.

. The overall run-time of the layer assignment phase varies between O(|V|+|E|)

and cubic time complexity depending on the layering strategy. If we make the

assumption that the number of layers and the size of a layer are roughly half the

number of vertices in a graph, then the overall time complexity for the layered75

drawing technique is quartic.

3. Spring-embedder algorithm

In the spring-embedder algorithm, edges are simulated as springs and ver-

tices as rings to which the springs are attached to. It is fairly simple to im-

plement. To improve the convergence speed and quality of the final drawing,80

a pre-processing step of circle layout or a random layout algorithm is recom-

mended. The initialization step then consists of acquiring the center coordinates

of the vertices, setting 2D force vectors to zero, and setting repulsion charges to

prevent vertices from overlapping. They are set to the diagonal length of each

vertex. After the initialization, the forces acting on the vertices are repeatedly85

calculated. This number of iterations is fixed to a default of 100 iterations.

This means that the algorithm stops after 100 iterations, or if a convergence

threshold is triggered. The running time of the spring-embedder algorithm is

quadratic with the number of vertices.

Repulsion algorithm. The repulsion algorithm is responsible for avoiding the90

vertex overlaps. This is done by generating large repulsive forces whenever

two vertices overlap. Initially, this algorithm calculates the Manhattan and

Euclidean distances between the pair of vertices. Then, a scalar force is calcu-

lated, proportional to the charges of the vertices and inversely proportional to

the square of the distance separating the vertices. This force is finally multiplied95

by the 2D Manhattan distance vector.

4

Attractive algorithm. The attractive algorithm first tries to find the Manhattan

and Euclidean distances between the pair of vertices connected to a chosen edge.

Next, the spring force is calculated using the physical equation for springs, since

the algorithm treats edges as physical springs. Finally, the computed spring100

force is multiplied by the 2D Manhattan distance vector and added to the force

vector of one vertex, and subtracted from the other.

Gravity algorithm. The gravity algorithm imparts upon each vertex a velocity

towards the gravitational field source. This is determined to be the barycenter

of all the vertices. Then, the force vector imparted on each vertex is calculated105

as the unit vector between the vertex and the barycenter and the strength of

the gravity field. This algorithm is used to increase the area usage efficiently.

3.1. Analysis

The spring-embedder algorithm runs with a constant iteration amount. The

repulsion algorithm dominates the time complexity for each simulation iteration,110

requiring O(|V|2) time. Since the attractive algorithm only uses O(|E|) time and

the gravity algorithm only uses O(|V|) time, the overall time complexity for the

spring-embedder algorithm is O(|V|2).

4. Force-transfer layout algorithm

The force-transfer drawing technique consists of a an initialization phase and115

a simulation phase. The initialization phase sets the forces acting on each vertex

to zero and the position of the vertex to its center coordinate. In the simulation

phase, each vertex exerts forces on overlapping neighboring vertices. This is

done by calculating the Manhattan and Euclidean distances and the unit vector

distance between the pair of input vertices. Then, a scalar force magnitude is120

computed. The direction of the force is determined by the greatest separating

distance between the vertices, so the vertices are moved as little as possible.

The simulation terminates once the forces have pushed all vertices apart such

5

that no overlap remains. The simulation can also be ended by a fixed number

of iterations.125

4.1. Analysis

The first loop of the force-transfer algorithm is bounded by O(|V|), the inner

loop is bounded by O(50*|V|2) and the last loop is bounded by O(50*|V|). This

means that the overall time complexity of the force-transfer algorithm is O(|V|2).

5. Tree-like and circle layout algorithm130

The tree-like layout algorithm gives good results on graph structures that

are really trees. The circle layout algorithm is best used on subgraphs or small

graphs. It makes an excellent preprocessing step for a force directed method

such as spring-embedder.

5.1. Tree-like algorithm135

The first step of the tree-like algorithm is to find all the root vertices in

the graph. A recursive process is then started to assign the children of each

root vertex coordinates before the root itself. Roots can be vertices with no

parents, or the result of breaking up a cycle. The final step of the algorithm is

to assign vertices with no children coordinates immediately, and vertices with140

children make a recursive call that assigns coordinates to the children before

being assigned coordinates themselves.

5.2. Circle layout algorithm

In the circle layout algorithm, all vertices are first sorted topologically. The

next step is then to calculate the perimeter of the circle. Finally, an interval145

fraction is calculated between 0 and 1. This interval will become the radian

angle used to calculate the vertex positions on the circle.

5.3. Analysis

Since all steps of the tree-like algorithm and the circle algorithm are done in

linear time, both algorithms have a linear overall run-time.150

6

6. Conclusion

The time performance of the different algorithms allows us to compare them

to each other.

. The results for the circle and tree-like layout algorithms indicate that even

for large graphs, only a fraction of a second is necessary to compute the entire155

output. The force-transform algorithm yields quadratic asymptotic behavior,

but depends on the initial layout. Even though the spring-embedder algorithm

is quadratic, the time performance of this algorithm is linear. The results for

the layered drawing technique indicate poor asymptotic behavior. This can be

defined by the fact that the Python language was used for the implementation.160

References

[1] D. Dubé, Graph layout for domain-specific modeling (2006).

7

	Introduction
	Layered drawing technique
	layer assignment
	Crossing Minimization
	Analysis

	Spring-embedder algorithm
	Analysis

	Force-transfer layout algorithm
	Analysis

	Tree-like and circle layout algorithm
	Tree-like algorithm
	Circle layout algorithm
	Analysis

	Conclusion

