
mbeddr

Lucas Heer

Abstract

Embedded systems are widely programmed in the C programming language.
While the major domain of C is e�cient low-level code, it has shortcomings
when it comes to safety, testing, maintainability and high-level constructs, all
of them being desirable features in embedded systems development. With the
recent technological advances in domain-speci�c modeling associated with
domain-speci�c languages and supporting language workbenches like Jet-
Brains MPS or Xtext, it has become easier to create new or extend existing
languages. This paper gives an overview of mbeddr, an extensible language
and IDE for embedded software development based on the C programming
language. In addition, mbeddr will be extended with a simple language from
the image manipulation domain. The work
ow and the results will be com-
pared with an implementation of the same language in Papyrus 1.

Keywords:

mbeddr, language workbench, domain speci�c language, embedded systems,
domain speci�c tooling, modeling

1https://eclipse.org/papyrus

Email address: lucas.heer@student.uantwerpen.be ()

Preprint submitted to UAntwerpen December 15, 2016

https://eclipse.org/papyrus

1. Introduction

1.1. Embedded software

Since mbeddr's main goal is to support developers of embedded software,
it is �rst necessary to identify the main challenges and problems in the tra-
ditional embedded software development process.
an embedded system is a computer system which is embedded in a bigger
technical or electrical device and serves a special purpose, such as controlling
actuators or measuring sensors. As a consequence, the following challenges
arise when developing software for an embedded system:

� Safety: A failure of an embedded system can have drastic conse-
quences, ranging from damage to life-threatening situations.

� Performance: The software for embedded systems often runs on small
microcontrollers with tight memory and performance constraints. Fur-
thermore, embedded system must frequently ful�ll realtime require-
ments. Therefore, embedded systems are traditionally developed with
a low-level programming language like C, which o�ers direct access to
the registers and memory of the underlying platform. High-level ab-
stractions are desirable but often come with a substantial overhead,
both memory- and performance-wise.

� Maintainability: Once an embedded system has deployed or came
into the market, it is often hard to change its software. Therefore, a
"get it right at the �rst time" development approach is important. This
can be achieved through rigorous testing and formal veri�cation of the
code. Also, maintainability of the code itself can be improved through
a clean design and the use of high-level constructs.

� Time to market: Depending on the domain, reducing the time needed
for developing an embedded system may be an important goal. Espe-
cially technical devices designed for a broad audience of customers are
quickly followed by either a new product or a newer generation.

Some of these goals contradict with each others. For example, a fast
time to market reduces the time for testing and veri�cation, leading to errors
in the code. Safety and maintainability can be improved with high-level
constructs, but these may introduce overhead which can be problematic for
the performance aspect.

2

Embedded software is tightly associated with its domain and highly di-
verse, ranging from customer products like digital cameras or refrigerators
to complex and distributed systems used in the automotive or aerospace.
Domain-speci�c languages have shown to greatly contribute to the ease and
productivity of the development of embedded systems (Manfred et al. (2012)).
According to Ebert and Jones (2009), more than 80 percent of all companies
that develop embedded systems use C as their main programming language.
This seems natural since C allows for low-level access to the underlying exe-
cuting platform and can be compiled to e�cient binary code. On the other
hand, it lacks support for high-level constructs, thus making the code hard
to understand, debug and maintain. In fact, many errors arise from rather
simple careless mistakes like bound errors, memory management and pointer
misuse or uninitialized variables that can be easily checked for using static
code analysis. See Vasik and Dudka (2011) for an overview of the most
common mistakes in C source code and how static code analysis can help
preventing these.
Due to C's low-level nature, it is complicated to �nd errors in the logic of
the program itself. For example, C lacks built-in support for high-level con-
structs like state machines that are commonly used in embedded systems.
The mbeddr project tries to solve these problems by changing and extending
C with modern language engineering methods.

1.2. mbeddr

Language engineering o�ers methods to solve the aforementioned prob-
lems. The mbeddr project is an approach to address shortcomings of the C
programming language with a strong focus on the embedded system domain.
mbeddr is a set of integrated and extensible languages, allowing seamless
integration of high-level constructs into standard C as well as custom exten-
sions. These high-level constructs are translated to standard C code, which
then is compiled with a normal compiler. The whole project is build on top of
the JetBrains MPS language workbench and provides an IDE. Figure 1 shows
the complete mbeddr architecture. MPS is used as a platform to implement
both the C core and default extensions to the language, like state machines
or physical units. On top of that, it is possible to de�ne own user extensions.
mbeddr is able to formally verify portions of its high-level constructs with

3

external tools like NuSMV 2, a symbolic model checker used to proof certain
properties of state machines. mbeddr also supports parts of the software
engineering process. It allows for the textual de�nition of requirements and
code documentation as well as adding trace links from code to requirements.
Modules and their dependencies can be visualized with PlantUML 3.

C compiler
Debugger

JetBrains MPSPlatform

Tool NuSMV Yices CBMC PlantUML ...

Implementation Analysis Process

C CoreCore
Model

checking
SMT

checking
Dataflow
analysis

Visualization
Documentation
Requirements

Default
extensions

Components
State

machines

Physical
units

Unit
testing

User
extensions

State
machine

verification

Decision
tables

Figure 1: The mbeddr architecture stack. The underlying platform for every component
is the JetBrains MPS language workbench.

Following is an incomplete overview of changes and extensions that mbeddr
o�ers to the programmer compared to standard C.

Cleaned up C C99 serves as a basis. In order to make C safer and more
maintainable, header �les and the preprocessor were removed from the lan-
guage and a modern module system was added.
Decision tables mbeddr provides a graphical table embedded directly in
the code that is translated to nested if-statements (see Figure 2). This leads

2http://nusmv.fbk.eu
3http://plantuml.com

4

http://nusmv.fbk.eu
http://plantuml.com

to safer code, since the tabular representation helps to spot mistakes much
faster than the bare textual counterpart.
State charts The language was extended with a notion of state charts. They
can be de�ned in a textual or tabular way and visualized. State charts are
translated to a switch-based implementation and can be formally veri�ed for
e.g. dead states or non-determinism, both potentially harmful and undesired
properties in embedded systems.
Requirement tracing mbeddr comes with an own language to write re-
quirements using normal text. Every requirement can be annotated with a
link to the corresponding source code that implements the requirement.
Unit testing A new language extension for unit testing was designed to
address the problem of testing in embedded software development.

Voelter et al. (2012) and Voelter et al. (2013) give a throughout overview
of mbeddr, both from the language engineering and the embedded software
development point of view.

Figure 2: Concrete syntax of a decision table embedded in standard C code. See code
listing 2 in the appendix section for the generated code.

5

1.3. Language workbenches and the mbeddr IDE

The term language workbench was �rst used by Fowler (2005). Accord-
ingly, a language workbench is a tool in which it is possible to freely de�ne
new languages which are fully integrated with each other. A characteristic
feature of a language workbench is that it uses a projectional editor (as op-
posed to a textual or parser-based editor) to manipulate a domain-speci�c
language. Figure 3 shows the di�erence between these two concepts: In a
textual editor, the user edits and perceives the concrete syntax in a text
bu�er. This bu�er is then checked and transformed into the abstract syntax
tree (AST). Projectional editors do not use parsers. Instead, the user directly
modi�es the AST while still perceiving the concrete syntax. For example,
projectional editors allow the integration of graphical or tabular notations
along with texutal notations. mbeddr makes use of this feature to provide a
tabular representation for large if-else constructs in form of a decision table
(see Figure 2). Voelter et al. (2014) give an overview over projectional editing
and investigate its practical usability.

Figure 3: Di�erence between a textual (left) and projectional editor (right)

mbeddr is implemented using the JetBrains MPS (Meta-Programming
System) language workbench. MPS is an open-source language workbench
allowing the de�nition new languages and their IDEs while making heavy use
of projectional editing. See Pech et al. (2013) for a short overview of MPS
as well as an example on how to extend Java using this language workbench.

1.4. Related work

mbeddr has gained some popularity among embedded system develop-
ment. In Wortmann and Beet (2016), mbeddr was used to create a domain-
speci�c extension to the C programming language speci�c to the needs of
satellite
ight software. The extension is aware of the ECSS 4 Packet utiliza-
tion standard, a standard de�ning the telemetry and teledata packets sent
and received by a satellite. The authors identify great potential to increase

4European Cooperation for Space Standardization

6

both developer productivity and quality of the resulting software.
In order to evaluate the practical use of mbeddr, Voelter et al. (2015) have
conducted an industrial case study on developing software for a smart meter.
While making heavy use of mbeddr's high-level constructs, they show that
it is still possible to generate e�cient code with low overhead that runs on
a time- and memory constraint microprocessor. They also identify a sound
improvement in terms of mastering complexity and maintainability.
Vinogradov et al. (2015) shows how mbeddr can help writing code for rail-
way domain applications. In essence, a subsystem of a legacy framework for
railway applications was re-engineered. Several advantages to the traditional
software writing process as well as some limitations of mbeddr were iden-
ti�ed, among them some restrictions when it comes to copy-pasting source
code into the projectional editor of mbeddr.

1.5. Overview of the paper

Section 2 presents the extension that will be implemented in the mbeddr
ecosystem. Section 3 gives details about the concrete implementation within
MPS. Section 3 compares both the work
ow of implementing the exten-
sion and the quality of the results with a solution implemented with Eclipse
Papyrus, a tool for graphical modelling of UML2 applications with extended
code generation capabilities. Section 5 gives a conclusion and a short overview
of possible future work.

7

2. Case study

2.1. Overview

As as case study, a simple image processing pipeline was chosen. It con-
sists of a set of atomics that are images, processing blocks and links. Images
can be connected via links with the processing blocks. The processing blocks
are a set of pre-de�ned manipulations to images. Examples for these are
scaling, colorspace conversion or various �lters like sobel, blur or sharpen.
mbeddr will be extended with a textual language for this domain. Several
checks will be implemented, for a example, it should be invalid to overlay two
images with di�erent dimensions. In essence, the language will be a simple
casual block diagram (CBD) without feedback loops and hierarchy. Listing
1 shows how a model in the language could look like.

1 Image in1 ;
2 Image In2 ;
3 Image out ;
4
5 BlurBlock b lur (s t r ength =1.5) ;
6 OverlayBlock ovlay () ;
7
8 in1 . connect (b lur) ;
9 in2 . connect (ovlay) ;
10 b lur . connect (ovlay) ;
11 ovlay . connect (out) ;
12
13 out . run () ;

Listing 1: Sample textual de�nition of a processing pipeline

8

3. Implementation

9

4. Comparison

10

5. Conclusion and future work

11

Appendix A. Code listings

Listing 2: Generated code from decision table

1 #include "main.h"
2
3 static int32 t main get points(
oat speed,
oat altitude);
4 static uint8 t main blockexpr get points 6(
oat altitude,
oat speed);
5
6 static int32 t main get points(
oat speed,
oat altitude)
7 f
8 int32 t points = 0;
9 points += main blockexpr get points 6(altitude, speed);
10 return points;
11 g
12
13 int32 t main(int32 t argc, char �(argv[]))
14 f
15 int32 t points = main get points(300, 700);
16 return 0;
17 g
18
19 static uint8 t main blockexpr get points 6(
oat altitude,
oat speed)
20 f
21 if (speed > 200)
22 f
23 if (altitude < 1000)
24 f
25 return 1;
26 g
27 if (altitude < 500)
28 f
29 return 3;
30 g
31 g
32 if (speed > 500)
33 f
34 if (altitude < 1000)
35 f

12

36 return 2;
37 g
38 if (altitude < 500)
39 f
40 return 4;
41 g
42 g
43 return 0;
44 g

13

Ebert, C., Jones, C., April 2009. Embedded software: Facts, �gures, and
future. Computer 42 (4), 42{52.

Fowler, M., 2005. Language workbenches: The killer-app for domain speci�c
languages? https://web.archive.org/web/20160710201655/http:

//martinfowler.com/articles/languageWorkbench.html, accessed:
2016-12-07.

Manfred, B., S. Kirstan, H. K., Schtz, B., 2012. What is the Bene�t of a
Model-Based Design of Embedded Software Systems in the Car Industry?
IGI Global, Ch. 13.

Pech, V., Shatalin, A., Voelter, M., 2013. Jetbrains mps as a tool for ex-
tending java. In: Proceedings of the 2013 International Conference on
Principles and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools. PPPJ '13. ACM, New York, NY, USA,
pp. 165{168.
URL http://doi.acm.org/10.1145/2500828.2500846

Vasik, O., Dudka, K., 2011. Common errors in c/c++ code and static anal-
ysis.

Vinogradov, S., Ozhigin, A., Ratiu, D., Sept 2015. Modern model-based
development approach for embedded systems practical experience. In: 2015
IEEE International Symposium on Systems Engineering (ISSE). pp. 56{59.

Voelter, M., Deursen, A. v., Kolb, B., Eberle, S., Oct. 2015. Using c language
extensions for developing embedded software: A case study. SIGPLAN
Not. 50 (10), 655{674.
URL http://doi.acm.org/10.1145/2858965.2814276

Voelter, M., Ratiu, D., Kolb, B., Schaetz, B., 2013. mbeddr: instantiating a
language workbench in the embedded software domain. Automated Soft-
ware Engineering 20 (3), 339{390.
URL http://dx.doi.org/10.1007/s10515-013-0120-4

Voelter, M., Ratiu, D., Schaetz, B., Kolb, B., 2012. Mbeddr: An extensible
c-based programming language and ide for embedded systems. In: Pro-
ceedings of the 3rd Annual Conference on Systems, Programming, and
Applications: Software for Humanity. SPLASH '12. ACM, New York, NY,

14

https://web.archive.org/web/20160710201655/http://martinfowler.com/articles/languageWorkbench.html
https://web.archive.org/web/20160710201655/http://martinfowler.com/articles/languageWorkbench.html
http://doi.acm.org/10.1145/2500828.2500846
http://doi.acm.org/10.1145/2858965.2814276
http://dx.doi.org/10.1007/s10515-013-0120-4

USA, pp. 121{140.
URL http://doi.acm.org/10.1145/2384716.2384767

Voelter, M., Siegmund, J., Berger, T., Kolb, B., 2014. Towards user-friendly
projectional editors. In: 7th International Conference on Software Lan-
guage Engineering (SLE).

Wortmann, A., Beet, M., 2016. Domain speci�c languages for e�cient satel-
lite control software development. In: Data systems in aerospace.

15

http://doi.acm.org/10.1145/2384716.2384767

	Introduction
	Embedded software
	mbeddr
	Language workbenches and the mbeddr IDE
	Related work
	Overview of the paper

	Case study
	Overview

	Implementation
	Comparison
	Conclusion and future work
	Code listings

