Translating Statecharts to behaviourally equivalent
Timed Petri Nets

Matteo Guastella!
University of Antwerp, Belgium

Abstract

Nowadays, when we model complex and real-time systems is very important
to pay attention not only on the system behaviour, but also to the fact
that the system must respect some properties, like for example, reliability
and safety. This kind of properties can be verified with a Petri Net, but
building a complex system using it is very difficult, because the complexity
of the resulting model can explode. Hence we want to build a system in
an "easy” way watching at his behaviour, using Statecharts, and then we
want to convert it ”automatically” in a model that is much more effective in
analysis of properties, like Petri Net. For this purpose this paper will give
an explanation of how to express Statecharts by means of Timed Petri Nets.
We will show how to make the transformation using a rule based approach
implemented in AToMPM and then we will discuss on the correctness and
the limitations of the transformation.

Keywords: Model Transformation, Statechart, Timed Petri Net, TINA
toolbox, AToMPM

1. Introduction

Model complex systems can be very hard, for this reason a behavioural
oriented approach is preferred in most of the cases. But this approach cannot
be enough, because we are only handling the functional requirements of the
system, ignoring completely the non functional. Indeed when we talk about
complex systems, usually we talk about system that interact with an external
environment, that requires an answer in a certain amount of time. Hence

lemail: matteo.guastella@student.uantwerpen.be

Preprint submitted to MDE January 30, 2017

10

15

20

25

30

35

40

aspects such as reliability and safety becomes fundamental in the modelling
process of systems such as those described above.

If for example, we want to model a driverless controller of a train, we want
to know if the controller can goes in deadlock. For this reason the Statechart
formalism is not enough, but we need another kind that is specialized in
analysis of properties, like Petri Nets.

However, for complex systems it’s very hard to be able to model a Petri
Net, for this reason it would be very beneficial an automatic transformation
between Statecharts and Petri Nets. In this way we can keep the facility of
modelling, deriving from Statecharts and at the same time we can improve
the analysis of the system, using the derived Petri Nets. Unfortunately we
can’t use the ”canonical” Petri Nets, because the Statecharts have a richer
semantic. Hence some elements typical of Statecharts are not expressible by
Petri Nets. First of all, the concept of time, for this reason we will use the
Timed Petri Nets formalism as specified in [I]. For other elements we will
just define the limitation of our transformation.

Once the target model is created, we need to verify if it is behavioural
equivalent to the corresponding Statechart. A proposed method by [1], is to
produce a number of sequence diagrams based on the possible actions per-
formed by the statechart, and verify if the reachability graph of the petri
net is consistent with them. Another way to verify the ”goodness” of the
transformation, is to create a test suite with a series of relevant statechart,
and the equivalent timed petri nets produced manually. Then we can au-
tomatically derive the statecharts in the test suite with the transformation
and see if the Timed Petri Nets from the test suite and those automatically
generate are the same, or are at least behavioural equivalent. The latter ap-
proach is indeed the one that we have followed. In particular we will assess
the equivalence between the models watching at the reachability graphs.

The paper is structured as follow: In section [2] we will talk about the
semantic of Statechart described in [2] and [3], we will also argue about
different aspects of the semantic, to implement during the transformation;
in section [3| we will talk about Timed Petri Nets implemented in AToMPM,
its semantic and the connection with TINA’s TPNs. [4]; in section [4] we will
describe concretely the rule based transformation using AToMPM; in section
5] we will describe the step necessary to convert AToOMPM petri nets to TINA
petri nets; finally in section [6] we will discuss about the work done and the
improvements that can be made.

45

50

55

60

65

70

75

80

2. Semantic of Statecharts

In this section we will shortly describe the semantic of the Statecharts,
taking inspiration from [2] and [3]. We didn’t follow a specific implementation
of StateCharts, but we just considered the different options offered with their
pros and cons, and we chose the one that looks better for our purposes.
In most of the cases we tried to implement more than one option, so the
transformation can suite different needs.

A Statechart describes the interactive behaviour of a system. The ac-
tive configuration represents the current state of the system, in other words
represent a snapshot of the system in a certain point in time. Instead the
behaviour of the statechart is represented by a sequence of active configura-
tions which follow one another in time, we can see this like the semantic of
the Statecharts. It should be noted, that it doesn’t exist a formal definition
of statecharts semantic, unlike for example Petri Nets. Hence another reason
for this transformation is that it makes the semantics of Statecharts explicit
in term of Petri Nets formalism.

Another remark to do is that the Statecharts are typically deterministic.
So when we will convert the model, the resulting Petri Net will have a ”linear”
reachability graph (in the following sections we will clarify this concept).

As we can see in figure [I| the statecharts have three types of states: basic-
state, OR-state, AND-state. The OR-states have subcomponents but only
one can be active at the same time, the AND-states have a number of orthog-
onal components, that are executed in parallel. These components share the
events. So if an event is generated in an orthogonal component is broadcasted
to the others orthogonal components possibly activating other transitions.
This can produce a chain effect that we should handle in our transformation.

As we can see in figure [2| a transition can have the following label:
”m|c]/a”, where m represent the message that trigger the transition, c the
condition that control the execution of the transition, and finally a represent
an action that is performed after the transition is triggered. All of these
parts are optional. We can also have a time-out trigger message, that has
a parameter t that represent the time that the transition has to wait before
the action can occur. Certain actions, in addition to being performed when
a transition is activated, can be performed at the entrance or at the exit of
a state, in this case we talk about entry action and exit action.

The set of transition and action of which we talked about, represent the
reactive behaviour of the system that reply to external(events) or tempo-

85

90

|T|
/B c: ED ™~
F) |
[52 }[cz][D2]
. s

Figure 1: Hierarchy of States

\ A m/act B (a)

l‘w.\ A mfact B (b

Figure 2: Transition

ral(planned actions) stimuli.

Another important element of Statecharts is the history connector. This
connector is used for take in memory the active configuration of a component
when the system goes out of it and then returns in it, an example is showed
in figure |3l To the history connector we can associate two kind of semantic:
"shallow history” and ”deep history”. The first take in memory the active
configuration of the state to only one level of depth, instead the second goes
inside the sub-states recursively until it finds only basic states, in this way
can memorize the entire active configuration of a composite state.

The last important aspect of which we need to talk is how the Statechart
formalism represent the time. Statemate implementation [3], defines two
type of model of time:

95

100

105

110

115

Figure 3: History

e synchronous, assumes that the system executes a single step every
time unit, reacting to all the external changes that occur between the
two time units;

e asynchronous(greedy), assumes that the system reacts whenever an
external change occurs, allowing for several external changes to occur
simultaneously and, most importantly, allowing several steps to take
place within a single point in time.

3. Timed Petri Net formalism in AToMPM

In this section we will show the Timed Petri Net formalism created using
AToMPM. In which we defined the elements that we need for executing the
transformation described in the next section. Always keeping in mind what
can be expressed in TINA, because at the end of the transformation we
should be able to convert the model to a valid syntax net for TINA.

Important elements for our transformation are timed transitions and in-
hibitor arcs both represented in the following abstract syntax. As we can see
in figure |4 we have two classes: Transition and Place. The Place class has
two attributes:

1. pname, name of the place;
2. tokens, number of tokens in the place;

The Transition class has four attributes:

1. tname, name of the transition;
2. interval_min, lower limit of the interval, accept int values;
3. interval max, uppre limit of the interval, accept int values;

120

125

130

135

T2P

&
) ¥

Transition Place
[+teme | + pname
+ interval_min + tokens
+ interval_max
+ interval_type

. Jopqiyul
led

Figure 4: Abstract Syntax Timed Petri Nets

4. interval _type, boundaries of the interval. We can have four kind of
interval, depending on the needs (open, close intervals), but usually we
will use close intervals with an unique value. Because in Statecharts
the interval is defined and has a single value and not a range. However
is useful to create a general formalism for reusing it;

For the transition class we have four constraint, the first two ensure that the
syntax of interval type is correct. The third prevent from negative value for
min e max and the latter ensure that the min is less than or equal to the max
value. Finally we have three kinds of arcs: T2P, P2T, Inhibitor. The first
two are the usual arcs between transitions the last one activate the transition
only if the place connected to it is empty.

I also modified the Concrete Visual Syntax accordingly to the Abstract
Syntax of the formalism. As we can see in figure [5| is added to the canonical
syntax an interval above the transition, that change its aspects based on the
values inserted using the mapper. And also another kind of arcs representing
the inhibitor arc.

4. Transformation

In this section we will introduce the set of rules that are used to transform
Statecharts in Timed Petri Nets. This section is divided in paragraph, in each
of which we will show a pattern of a Statechart and the corresponding rules
to apply for obtaining an equivalent TPN. At the end of this section we will
show the chain of rules applied in every transformation.

Placelcon T2PLink P2TLink

L L A / inhibitorLink
Transitionlcon

Figure 5: Concrete Visual Syntax

Transformation

® entry/exit actions @ History States

[Conditions] ® an
Time Events

@ Composite States

L]
[IN STATE Conditions]

® Orthogonal Components

Figure 6: Boundaries

But first is fundamental to define the boundaries of the transformation.

1o In other words we need to define which elements of the Statechart formalism

are involved in the transformation and which are left out of it. As we can

see in figure[6] the transformation will include, transitions triggered by events

and time intervals, OR-states, AND-states. We left out the entry/exit action

and the transitions triggered by conditions, because they use variables that

s should be stored in memory. The problem is that the Petri Nets formalism

doesn’t support this concept as so we should use other variants of Petri Nets

like Colored Petri Nets. We also left out the history state, but is easily
implementable using the pattern provide in [1].

150

155

160

165

170

Figure 7: Transitions example

Initialization MacroStep. This paragraph describe the initialization steps in-
volved at the beginning of the transformation:

1. Solve conflicts between transitions:, this rule is used in case of a
possible non deterministic behaviour of the model, due to the presence
of an internal and an external transition with the same name. In this
case, following the statemate approach described in [3], we will delete
the internal transition giving higher priority to the external transition.
An example of this kinds of conflicts can be found in figure [10

2. flatten rename, is used for flattening the Statechart. It rename the
states recursively until a simple state is found using the following pat-
tern: ”parentstate.state”;

3. init, create a place for each simple state in the statechart.;

4. mark initial place, search the initial place of the statecharts and
mark the corresponding place with a token.

Transition Arc Between Simple States. As we can see in figure [7] a transition
between two states can be simple, without triggers, or can be triggered by
an event or by a time interval. For this reason we need to distinguish three
different rules for the transformation.

1. Triggerless:
This transition is the simplest, because we can just create a transition
between the places involved.

2. Call event:
As we can see in the figure [§] it search a pair of states that have a
transition triggered by an event. It creates the transition "act” corre-
sponding to the action performed by the transition and another place

175

180

190

Figure 9: Timed transition rule

representing the event ”e”, if the place is marked it means that the
event is occurred. For this reason we have to introduce another tran-
sition "abort”, because the event can occur but the system could not
be in the corresponding state, so we need to discard it. Every time
the system is in the right state and an event occur the corresponding
transition must fire. So we can just connect to the abort transition an
inhibitor arc from the state place, in this way only if it is empty (the
system is not in this state) the abort transition can fire.

. Time event:

As we can see in figure [J] the rule is very similar to the previous, but
in this case we need to wait a certain amount of time before firing the
transition. For this reason the rule creates a transition ”T” that after
”d” time fires and marks with a token the event place ”e”. We also need
an inhibitor arc between the event place and the transition, because the

timed transition can fire only if the event place "e” is empty (i.e. the
event is not occurred).

The patterns expressed above are valid also for transitions between states
at every level of hierarchy. For this reason starting from here when we are
talking about a transition we are implicitly referring to the event transition.

200

205

ne

bree

1d

O

E F

Figure 10: Transition from and to composite states

Variation of this rule can be easily derived.
In figure |10 we can find a simple example with different kinds of transi-
tions that now we are going to explain, and convert.

Transition Arc from a Simple State to a Composite State. In this case we can
distinguish between other two cases, the first in which the transition enters
a sequential composite state, and the second in which the transition enters a
concurrent composite state. Both these rules follows a two steps approach:

1. Initialization, the transition is initialized but is only connected to the
simple state(this rule is in common).

2. Connection, if the transition enter a sequential state the transition
"act” is connected to the initial state of the composite state. Otherwise
is connected to each orthogonal component and precisely to their initial
states.

The rules involved are showed in figure

10

Figure 12: From composite state to simple state

11

210

215

220

225

Figure 13: Interesting example about time and events

Transition Arc from a Composite States to a Simple State. In this case we
can have two different types of transitions outgoing from the composite state.

1. A transition from a composite state, in this case we need to con-
nect every sub-state in the composite state to a transition "act” that is
triggered by the same event. In this way we construct a XOR between
state, because from every state we can trigger the transition and go
out of the composite state, but only one state at the same time can be
occupied.

2. An exit transition from one sub-state of the composite state,
to a new target state. In this case is just a normal transition between
simple states, because we have already flattened the model.

In figure are showed the rules involved. We can also have transitions
between composite states, the rules involved are very similar to those just
explained, so we are not going to explain them.

Model of Time. As we can see in figure we can have transitions that gen-
erate an events, and the event just generated can been immediately available
for other transitions, in this case the next one. So the event is generated
and consumed in the same time step. As we said before we can have two
kind of approaches in this case: synchronous and asynchronous. For a better
solution we have chosen to implement both.

The asynchronous is just the one that we have already implemented. For
the synchronous I created an alternative schedule (T_schedule_syn). The idea
behind is that only an ”action” transition can fire in the same time step. So
I created a sort of fair pattern that allow only one transition per time step
to fire. In this way is not possible to fire two transition at the ”same” time.

12

Figure 14: Synchronous model of time

Broadcast of Fvents. As I already explained between orthogonal components
the events are sent in broadcasting. So we need a transformation that pre-
serve the events and at the same time gives the same opportunity to fire by

235 each ”act” transition. So as we can see in figure [15| the transformation use
the following steps:

1. create a double connection between transitions and events, in this way
the events are never consumed;
2. create the transition ”fair”;
240 3. create for every "act” transition an in_fair place and an out_fair place,
and connect to them the ”act” transition and the "abort” transition.
Connect also the abort transition, because if the state is not current the
transition should fire anyway, otherwise the system will go in deadlock.
4. connect the event place to the fair transition, because at every time
25 step all the events should be discarded.

Generate the Environment. A statecharts is a reactive system that change its
internal state and produce output in answer to external events that are given

13

250

255

260

265

Figure 15: Asynchronous model of time

from an environment. After our transformation we have modeled the system
and now we miss to model the environment. Otherwise we cannot simulate
the system and we cannot produce the reachability graph. A schematic
description of what we want to obtain is showed in figure Fortunately the
environment is just a non deterministic event generator. A perfect formalism
for this purpose is a non deterministic Petri Net.

Hence the last step of the transformation is to create this event generator
and connect it to all the events in the model. The main characteristic of this
generator is that is a big choice pattern between every events, so at every
step of the simulation we can randomly generate one of the events if it not
already present, figure [17| show the rule involved in this transformation.

Schedule. Finally we can execute the rules described above using the schedule
showed in figure the order of the macro steps involved in this transfor-
mation are the following:

1. Initialization

Handle transitions to composite states

Handle transitions from composite states

Handle transitions between composite states

Handle transitions between simple states

Handle events and broadcasting inside Orthogonal Components

N Ot W

Events Generator

14

AUTONOMOUS SYSTEM

ENVIRONMENT

@ Input sys Dutput

StateCharts

event generatof

Petri Nets Petri Nets

[Non D ini [D

Figure 16: Autonomous system

6,
© o
2
re # [0, w[M 6,
b Fis # L #
#

Figure 17: Event generator

15

270

275

280

Figure 18: T_schedule_asyn.model transformation schedule

In point 5 in the synchronous approach is followed by the application of the
rule explained above before the event generator.

5. From AToMPM to TINA toolbox

If we apply the schedule to a valid Statecharts we construct the corre-
sponding Timed Petri Net in AToMPM. The next goal is to derive from the
Net obtained a TINA’s valid Net, that we can import and analyze. With
this goal in mind we need to follow this approach:

1. export the model in metaDepth using the corresponding toolbar;
2. generate the file exported.tpn using EGL language;
3. import in TINA toolbox and analyze.

At this point we need to assess the goodness of the transformation, the
easiest way to do it is just watch at the net and see if the patterns explained
in the rules are present. A better approach is to construct the reachability
graph and see if the behavior and the typical characteristics of Statecharts
emerge in it.

16

285

290

Figure 19: Example of transformation

Now that all the steps are in order we can see an example of transfor-
mation. In figure we can see a simple example and its corresponding
transformation imported in TINA. We can see some typical patterns like
timed transitions, event generator and so on. But we want also to analyze
the net and build the reachability graph that is showed in figure [I9] As we
can see the reachability graph is linear if we consider the transitions trig-
gered by the actions "a:” these actions indeed represent the deterministic
behavior typical of Statecharts. Instead the ”environment” transitions, like
“abort”, "after”, and "ev_gen” represent the non deterministic behavior of
the autonomous system.

17

295

300

305

310

315

320

6. Conclusion

In this project we successfully extended and implemented the approach
showed in [I]. Creating an automatic transformation from Statecharts to
Timed Petri Nets. This transformation bring with it some advantages:

e improve the analysis of properties of systems modeled using State-
charts;

e define a rigorous semantic for Statecharts by means of the semantic of
Petri Nets (reachability graph).

Future work should concentrate its attention first, on improving the trans-
formation: for example generalizing the rules using abstract state and trying
to reduce the number of rules, or trying to improve the performance of the
transformation, because with big statecharts strongly connected the transfor-
mation can take a while before terminate. Second extending the boundaries
defined previously, maybe trying to transform to a richer Petri Nets formal-
ism.

References

[1] Y. Hammal, A Formal Semantics of UML StateCharts by Means of Timed
Petri Nets, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 38—
52.d0i:10.1007/11562436_5.

2] D. Harel, H. Kugler, The Rhapsody Semantics of Statecharts (or, On
the Executable Core of the UML), Springer Berlin Heidelberg, Berlin,
Heidelberg, 2004, pp. 325-354. doi:10.1007/978-3-540-27863-4_19.

[3] D. Harel, A. Naamad, The statemate semantics of statecharts, ACM
Trans. Softw. Eng. Methodol. 5 (4) (1996) 293-333. doi:10.1145/
235321 .235322.

URL http://doi.acm.org/10.1145/235321.235322

[4] Tina (time petri net analyzer).
URL http://projects.laas.fr/tina/index.php

18

http://dx.doi.org/10.1007/11562436_5
http://dx.doi.org/10.1007/978-3-540-27863-4_19
http://doi.acm.org/10.1145/235321.235322
http://dx.doi.org/10.1145/235321.235322
http://dx.doi.org/10.1145/235321.235322
http://dx.doi.org/10.1145/235321.235322
http://doi.acm.org/10.1145/235321.235322
http://projects.laas.fr/tina/index.php
http://projects.laas.fr/tina/index.php

	Introduction
	Semantic of Statecharts
	Timed Petri Net formalism in AToMPM
	Transformation
	From AToMPM to TINA toolbox
	Conclusion

