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Abstract

Complex systems consist of large numbers of diverse, interacting components.

The correctness of any one component rests on a set of assumptions about

the rest of the system. Assumptions that are initially correct may become

invalid as requirements change.

This project explores the use of ontologies to capture the different beliefs

held about a train control system and to automatically detect inconsistencies

in these beliefs.
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1 Introduction

Complex systems consist of large numbers of diverse, interacting compo-

nents. These components may be designed by experts from many disparate

fields, using multiple formalisms. The correct behavior of a component rests

on a set of assumptions made about the rest of the system. A software

developer might assume a certain amount of processing power and avail-

able working memory from the hardware, for example. Assumptions that

were initially correct may become invalid as system requirements change and

evolve.
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For this project, I’ve explored the use of ontologies to capture the different

beliefs that are held about a system and to detect when multiple beliefs con-

tradict each other. Specifically, I built an ontology for a train control system

using the OWL Web Ontology Language1 and the protégé ontology editor

tool2. I used the integrated reasoning capabilities of protégé to automatically

detect and pinpoint contradictory beliefs.

There’s a brief introduction to ontologies in Section 2, followed by a

description of the train control system and some of its requirements in Section

3. Section 4 shows how assumptions can be encoded in the ontology in a way

that will lead to an inconsistent ontology if some of the assumptions are

invalid. Finally, conclusions are drawn in Section 5.

2 Ontologies

Ontologies are descriptions of the concepts and relationships in a particu-

lar domain. Such a description may take the form of informal prose, or it may

be embedded in a more formal language with precise semantics. In the latter

case, we can use automated reasoning systems to derive new information that

was not explicitly stated, or to detect contradictory statements.

Figure 1: A small ontology capturing some essential concepts and relations of a railroad

network. The empty arrowhead indicates Train is a subclass of Vehicle.

1https://www.w3.org/OWL/
2http://protege.stanford.edu/
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The semantics of ontology languages are often based on a family of formal

logics known as description logics [1]. There are many variants of description

logic, each making a different trade-off between expressivity and efficiency

of reasoning. Both major versions of the OWL Web Ontology Language are

based on description logics. Each version supports several profiles, subsets

of the language suited for different tasks. Each profile is based on a differ-

ent variant of description logic. I mainly stuck to OWL1’s DL profile for

this project, it provides a good amount of expressivity while still having a

decidable logic. For convenience, I did use OWL2’s qualified cardinality re-

strictions, which lets you express concepts like ‘a person with exactly two

children that are male’.

In OWL, you can make statements both at the conceptual level (‘trains

are vehicles’) and at the level of the individual (‘Bob is a driver’). In this

project I only make use of statements about concepts. The most important

statement is saying a concept is subsumed by another concept (i.e. it is a

subclass). If two concepts subsume each other, they are equivalent. Not all

concepts need to be explicitly named. Concepts can be constructed and com-

bined in various ways. You can take the intersection, union or complement

of a concept. You can also construct a concept consisting of all individuals

that have a certain relationship.

OWL defines a standard, XML-based format for describing ontologies.

Since it can be a bit verbose and difficult to follow, I will convey ontologies

using a visual notation loosely based on UML Class Diagrams instead. I will

be explicit about the meaning of any new notation introduced.

3 Designing a Complex System

Complex systems consist of many diverse, interacting components. De-

sign may involve experts from various fields working on heterogeneous com-

ponents that ultimately require integration. Incorrect assumptions made in

the design phase can cause integration to fail, leading to lost time and money.
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In this section I describe a train control system, a complex system responsi-

ble for transmitting signal information and controlling and protecting trains

on a railroad network. I sketch some requirements of this system and de-

scribe various plausible assumptions that could be made when designing its

components.

3.1 System Overview

A schematic illustrating some key components of a train control system

is shown in Figure 2. It is of the European Train Control System (ETCS)3,

designed to replace many of the incompatible European systems currently in

use.

Figure 2: Schematic4 of the European Train Control System. Placed between the rails is

a transmission device that transmits location and signal information to the train when it

passes over the device.

Placed between the rails is a balise, a transmission device that commu-

nicates location and signal information to the train when it passes over the

device. On the bottom of the train is a receiver, which stores the received

information in a computer system. This information is used to inform the

3http://www.ertms.net/
4adapted from https://en.wikipedia.org/wiki/European Train Control System
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driver, who might be driving at a velocity high enough that the external sig-

nals are difficult to discern, or to initiate certain actions automatically, like

stopping the train in case of danger.

3.2 Making Assumptions

As stated previously, a requirement of the system is that location and

signal information is communicated to the train when it passes over the

transmission device. Among many other things, someone will need to decide

on the layout of the digital data-frame that contains the relevant information.

Since the train is in contact with the transmission device for only a brief

moment, it should be verified that the data-frame is small enough to be

sent in its entirety during that period. This depends on the data-rate of the

transmission device and the maximum velocity of the trains. The person

designing the data-frame will need to assume that these values stay within

certain bounds.

Another requirement may be that the driver is warned when driving past

a yellow light, and needs to press an acknowledgement button or the train

is automatically stopped. A yellow light indicates that the next light is red

and that the driver should prepare to stop at the next light. Here, it should

be verified that when the automatic brake is applied, the train can actually

come to a complete stop before reaching the red light. Otherwise, collisions

can happen. Verifying this property might be done by a control engineer

using a formalism like causal block diagrams or a domain specific modeling

language to simulate the physical system. Whether a train can brake in time

will depend on its weight, its maximum velocity and the distance between

traffic lights. Again, assumptions need to be made about the system. When

any of the assumptions are no longer valid, neither are any of the previous

conclusions.
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4 Capturing Assumptions

This section describes how assumptions can be incorporated into an on-

tology and how an automated reasoning system can detect inconsistencies

between these assumptions and other beliefs. The ontology that we’ll start

from is shown in Figure 3. It contains the various families of trains that will

be supported by the train control system.

Figure 3: An ontology containing the different families of trains that need to be supported.

Instances of each train family are constrained to have a certain maximum velocity, in km/h.

All vehicles, and thus all trains, have a property maxVelocity of type

double. OWL has several builtin datatypes/concepts, one of which is the

double precision floating point number. The exact maximum velocity is

specified for all train families. Note that families like ICE-1 are not entities.

They are concepts and we are stating that all instances of these concepts

have the given maximum velocity.
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4.1 Consistency

An inconsistency or contradiction occurs when two or more assertions

are made that are in conflict with each other, i.e. can never be true at the

same time. When you make two conflicting statements about a concept in

an ontology, the result will be that there can never be a satisfying instance

of that concept. Having an empty concept is not useful and a clear indicator

of contradictory beliefs. Protégé’s integrated reasoners can detect this kind

of inconsistency and highlight the offending concept(s).

4.2 Encoding Assumptions

Returning to the earlier requirement of automatically stopping the train

when a yellow light is ignored, one of the things that needs to be verified

is whether the train can come to a complete stop before it reaches the next

light. This depends, among other things, on the maximum velocity of the

trains. The control engineer that verifies this property assumes that these

values fall within certain bounds. In other words, he or she has a set of trains

in mind for which the automatic brake system will perform as desired. As

long as the trains that actually drive on the tracks are a subset of these, all

conclusions drawn by the engineer will hold.

The OWL ontology language allows for concept descriptions such as ‘all

things with a maximum velocity of at most 300km/h’. A natural way to

encode the assumption then, is to state that Train should be a subclass of

this concept. One way to look at the subclass relation is as specifying a

necessary condition. For something to be a member of a class, it is necessary

that it has all the characteristics of the things in the superclass. (Similarly,

the equivalence relation can be seen as expressing a necessary and sufficient

condition).
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Figure 4: Two different assumptions placed on trains. Any family of trains must find itself

in the intersection.

It is likely that other people will make different assumptions about the

trains’ characteristics. For example, someone may assume that all trains have

a maximum velocity of at least 100km/h, as illustrated in Figure 4. Adding

assumptions constrains the related concept (i.e. its set of possible instances

grows smaller). The concept TGV-Reseau is overconstrained, as its instances

should all have a maximum velocity of 320km/h, while simultaneously having

a maximum velocity of less than 300km/h.

4.3 Introducing Inconsistencies

Adding assumptions about the train’s maximum velocity and the length

of track segments leads to the ontology in Figure 5. Here, the boxes with

thick dashed borders denote unnamed concepts of all things whose properties

with given name have values that fall in the given bounds.
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Figure 5: The assumptions made by the control engineer are encoded as unnamed super-

classes. They are the boxes with the thick dashed borders.

Although the ontology was initially consistent, it was decided that the

TGV-Reseau is to be supported. These trains have a maximum velocity of

320km/h, well above the velocity that our control engineer had assumed the

trains would be operating at. Because we have stated that the TGV-Reseau

is a Train, then by transitivity of the subclass relationship we also have that

it is a subclass of the unnamed concept of all things with a maximum velocity

of at most 300km/h. As a result, there can never by any instances of the

TGV-Reseau concept, and it is clear that contradictory beliefs about the

system exist.

Running protégé’s integrated reasoner reveals that there is indeed an

inconsistency and that TGV-Reseau is equivalent to the empty concept.
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Figure 6: The beliefs that all trains have a velocity of at most 300km/h and that trains

exist with a maximum velocity of 320km/h are inconsistent.

4.4 Pitfalls

OWL’s semantics can be surprising at times. This mainly results from

two key principles in its design [2]. One of these is that OWL does not make

the closed world assumption. Under the closed world assumption, anything

not known to be true must be false. Instead, if we were to add a train instance

to the ontology without specifying a maximum velocity, there would be no

complaints, even though we stated that all trains should have one. This is

because under the open world assumption, it is assumed that this velocity

exists, but is simply unknown to us.

Another cause for surprise is that OWL does not make the unique names

assumption. That is, concepts or individuals with a different name are not

assumed to be distinct (although they can be specifically marked as such). If

we were to have a relation with maximum cardinality of one to two individuals

with different names, rather than complain about the cardinality restriction,
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the system will instead infer that these two individuals must be identical.

When you consider that OWL is a key technology for the vision of The

Semantic Web [3], it is clear why these assumptions make sense. A concept

such as Vehicle will certainly occur in many different ontologies. But due

to the use of namespaces, the name will be different. Because there is no

unique names assumption, you can indicate that your concept of Vehicle is

equivalent to the Vehicle concept in a different ontology, which may contain

much more information on vehicles than yours.

5 Conclusion

This project has explored the use of ontologies to capture the different

beliefs held about complex systems and to reason about their consistency.

I’ve given several examples of assumptions which may be correct initially,

but become invalid once the requirements of the system change.

Using the OWL Web Ontology Language and the tooling that has sprung

up around it, I was able to build a small ontology related to a train control

system and encode the assumptions made by an engineer verifying a safety

property. Once the assumptions were no longer valid, I was able to detect

this using protégé’s integrated reasoning capabilities, and pinpoint which

concepts were the cause of the conflict.
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