
Instance Based Meta-Model Generation

Simon Van Laerhoven

Abstract

Model-driven engineering aims to improve the efficiency of the software devel-
opment process. Domain-specific modelling languages (DSMLs) are used to
develop models and are specified through meta-models. Domain experts, who
have the knowledge about the domain usually don’t have the skills needed
to develop a correct meta-model, while software engineers, who do have the
needed skills, don’t have enough knowledge about the specific domain. This
makes close interaction between software engineers and domain experts nec-
essary which slows the development process. This is where the need for
instance based meta-model generation rises. In this paper we propose a
way to create sample models using a generic meta-model in AToMPM. With
model transformations these samples will be used to automatically generate
a meta-model to which all the samples conform.

Keywords: Meta-Model, Model, Example-driven modelling, Exploratory
modelling

1. Introduction

Model-driven engineering (MDE) has gained a lot of populairty over the
years. It is a higher level form of software development which allows domain
experts, with very limited knowledge of programming, to create software
applications. Before a domain expert can start modelling, a domain spe-
cific modelling language (DSML) has to be defined to match the problem
domain and constrain the user. A DSML is defined by a meta-model. Do-
main experts, who have the knowledge about the domain usually don’t have
the skills needed to develop a correct meta-model, while software engineers,
who do have the needed skills, don’t have enough knowledge about the spe-
cific domain. This makes close interaction between software engineers and
domain experts necessary which slows the development process. Instance
based meta-model generation is a possible solution for this problem. The

Preprint submitted to University of Antwerp December 14, 2016



idea is that with multiple sample models, created by the domain expert, a
meta-model is automatically generated. All the sample models will conform
to the created meta-model. With this the need for close interaction with the
software engineer decreases drastically, although the software engineer might
still be usefull for some of the steps in the meta-model generation process as
we will discuss later.
In this paper we will propose a method for meta-model generation in AToMPM
(A Tool for Multi-Paradigm Modelling) (Syriani et al., 2013).

2. Related Work

The following papers are somewhat related to the problem of Instance
based meta-model generation. But they don’t provide much help except
that they give context to the problem at hand.

2.1. Generating meta-model-based freehand editors

Minas (2007) talks about freehand editing of meta-model-based models
as opposed to structured editing. Most tools only provide structured editing
of models, where all the allowed operations transform a correct model into
another correct model. Freehand editing allows editing of a model without
any restrictions, giving more freedom to the user. They combine meta-model-
based models with freehand editing in the tool DiaMeta.

2.2. Example-driven meta-model development

Example-driven meta-model development by López-Fernández et al. (2015)
is the most relevant paper in our case. They propose an approach where a
meta-model is generated from model fragments which are specified using the
tools Dia or yED. The meta-model is iteratively updated using the model
fragments and refactoring by the user. A virtual assistant proposes some
refactorings to the user during the process. In the end the meta-model is
validated by the domain expert by again checking example models against
the meta-model.

2.3. Automated Model-to-Metamodel Transformations Based on the Concepts
of Deep Instantiation

In Kainz et al. (2011) they propose an automated model to meta-model
transformation in the Eclipse Modelling Framework (EMF). The tranforma-
tion is divided in phases and based on the concept of deep instantiation.

2



Deep instantiation allows elements in a model to be both a class and an
objects (clabjects). The result of the different processing phases will be a
complete definition of the meta-model.

2.4. Supporting constructive and exploratory modes of modeling in multi-level
ontologies

Atkinson et al. (2011) talks about the differences between constructive
and exploratory modelling. Constructive modelling aims to create a com-
plete, definitive description of all the types in a system. Building a meta-
model can be seen as constructive modelling as it completely describes all
types system. Exploratory modelling, on the other hand, aims to develop the
types that characterize the objects in a domain. Instance Based Meta-Model
Generation can then be seen as a form of exploratory modelling.

3. Model to Meta-Model Transformations in AToMPM

In this section we will propose a method to transform a collection of
sample models into a meta-model which all sample models conform to. The
tool we work with is AToMPM (Syriani et al., 2013). It allows us to create
meta-models, models and model tranformations with a visual syntax. The
process will be executed in 7 steps.

3.1. Generic Meta-Model

First we need a generic meta model which we will use to model the ex-
ample models with. Figure 1 represents the abstract syntac of our generic
meta-model. There are four classes: Model, ModelElement, Class and As-
sociation. A Model object represents one sample model and contains zero
or more ModelElements. A ModelElement is an abstract class which has as
attributes type and attributes. Both Class and Association are instances of
ModelElement. An Association object has exactly one incoming and one out-
going edge to and from a Class object. Figure 2 shows how we will represent
our generic meta-model.

3.2. Create Example Models

With our new generic meta-model a domain expert can create a number
of sample models for the domain they desire. These models should represent
the most important, if not all, use cases of the desired DSML. An example of
two very simple use cases in a DSML similar to that of Petri Nets is shown
in Figure 3.

3



Figure 1: Generic Abstract Syntax

Figure 2: Generic Concrete Syntax

4



Figure 3: Two simple examples in a PN-like language

3.3. Model transformations into abstract syntax

Through the AToMPM model transformations we should be able to au-
tomatically generate a meta-model describing the language of the sample
models.

3.4. Manually check abstract syntax

At this stage the meta-model could be checked to see if it looks correct.
This can be done by a software engineer checking the meta-model. For this
again a short interaction between a software engineer and domain expert is
needed. This step is optional because later in the process the meta-model
can be checked by creating new models, which the domain expert considers
correct, and trying to verify if they conform to the meta-model.

3.5. Default concrete syntax generation

From our newly generated meta-model, we will generate a default concrete
syntax. A rectangle to represent an element and an arrow to connect two
elements representing an association.

3.6. Manually change concrete syntax icons

The domain expert then needs to change to concrete symbols to the layout
that they had in mind.

5



3.7. Create models using newly generated MM

The final step is using the newly generated meta-model to create models.
These models should be used to verify the meta-model. If a created model is
correct according to the domain expert but is not accepted as a valid instance
of the meta-model, then the meta-model needs to be adapted. A simple way
of adapting the meta-model is by adding this correct but invalid model as a
sample in the set of samples used to generate the meta-model. The newest
generated meta-model should then, by definition, see this model as valid.

4. Conclusion

We have stated the need for Instance Based Meta-Model Generation. We
aim to further improve the efficiency of the development process by decreasing
the work for software engineers. We presented some related work about the
topic, which was never directly related to our work, but helped us to put it
into context.

5. References

Atkinson, C., Kennel, B., Goß, B., 2011. Supporting constructive and ex-
ploratory modes of modeling in multi-level ontologies. In: Procs. 7th Int.
Workshop on Semantic Web Enabled Software Engineering, Bonn (Octo-
ber 24, 2011).

Kainz, G., Buckl, C., Knoll, A., 2011. Automated Model-to-Metamodel
Transformations Based on the Concepts of Deep Instantiation. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 17–31.
URL http://dx.doi.org/10.1007/978-3-642-24485-83

López-Fernández, J. J., Cuadrado, J. S., Guerra, E., de Lara, J., 2015.
Example-driven meta-model development. Software & Systems Modeling
14 (4), 1323–1347.
URL http://dx.doi.org/10.1007/s10270-013-0392-y

Minas, M., 2007. Generating meta-model-based freehand editors. Electronic
Communications of the EASST 1.

Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Van Mierlo, S.,
Ergin, H., 2013. Atompm: A web-based modeling environment. In: De-
mos/Posters/StudentResearch@ MoDELS. Citeseer, pp. 21–25.

6


