
(Modelling) Semantics of Modelling Languages

Hans Vangheluwe

7 September 2010, Lisboa, Portugal



(Modelling) Semantics of Modelling Languages

Overview
1 Building DS(V)M Tools Effectively

1 Specifying syntax of DS(V)Ls:

abstract (meta-modelling)
concrete (textual–visual)

2 Specifying DS(V)L semantics: transformations
3 Modelling (and executing) transformations:

(rule-based) transformation languages
2 Delving into Semantics
3 DSL examples with a focus on semantics

2



(Modelling) Semantics of Modelling Languages

Syntax, Semantics, and all that Stuff
David Harel, Bernhard Rumpe.
Meaningful Modeling: What’s the Semantics of "Semantics"?
IEEE Computer, vol. 37, no. 10, pp. 64-72, October, 2004.

3



(Modelling) Semantics of Modelling Languages

Information and its syntactic representation as data

data is used to communicate
understanding the information encoded in the data
interpretation:
a mapping that assigns a meaning to each (legal) piece of
data

Two pieces of data may encode the same information

“June 20, 2000”
“The last day of the first spring in the second millennium”

4



(Modelling) Semantics of Modelling Languages

Information and its syntactic representation as data
Same piece of data may have several meanings
i.e., denote different information for different people or applications

“John’s birthday” is context-dependent

Different languages for different “users”

people use natural languages to communicate
machines use machine-readable languages for
communication
people use programming/modelling languages to
communicate with machines

5



(Modelling) Semantics of Modelling Languages

Dissecting a Modelling Language
(tool builder’s view)

6



(Modelling) Semantics of Modelling Languages

Concrete Textual Syntax

define f(n: NaturalNumber): NaturalNumber
{
return n*(n+1) DIV 2;
}

7



(Modelling) Semantics of Modelling Languages

Concrete Visual Syntax

8



(Modelling) Semantics of Modelling Languages

Semantics: not necessarily Behavioural, can be Structural

9



(Modelling) Semantics of Modelling Languages

Semantic Domain: Structural

10



(Modelling) Semantics of Modelling Languages

Sentence/Model in Language

define f(n: NaturalNumber): NaturalNumber
{
return n*(n+1) DIV 2;
}

11



(Modelling) Semantics of Modelling Languages

Semantic Domain: Arithmetic expressions
A BNF-like grammar describes the abstract syntax for simplified
arithmetic expressions.

12



(Modelling) Semantics of Modelling Languages

Semantic Domain: Arithmetic expressions
for semantic domain S we choose all natural numbers

S < Exp >= Nat

and the semantic mapping M associates a number with each
expression:

M < Exp >:< Exp >→ Nat

standard mathematics is a natural notation for describing the mapping.

M(”42”) = 42

inductive definition of M:

M(a” + ”b) = M(a) + M(b); M(”foo(”a”)”) = M(a)xM(a)

13



(Modelling) Semantics of Modelling Languages

Semantic Domains for Dataflow Diagrams?

14



(Modelling) Semantics of Modelling Languages

Semantic Domains for Dataflow Diagrams

Dataflow diagrams consist of computational nodes equipped with input
and output channels for communication.

Semantics: structural view or behavioural view.

Does a computational component have memory? Can it be nondeterministic? Can the component react to partial input by

emitting a partial result? Can several results be sent as a reaction to a single input? Is there a need to track the causality

between input and output or is a message trace sufficient? Do the components need to be greedy, and can they emit messages

spontaneously? Is there a buffer along the communication lines between components for storing unprocessed messages, or are

messages lost if unprocessed? Is the fairness of processing input from different sources guaranteed? Is feedback (looping) in the

diagram allowed?

15



(Modelling) Semantics of Modelling Languages

Semantic Domains for Dataflow Diagrams

Different answers to such questions lead to a variety of different kinds
of semantic domains for behaviour:

traces
input/output-relations
streams and stream-processing functions
. . .

16



(Modelling) Semantics of Modelling Languages

Semantic Domain: Dataflow Diagrams

In the simplest case, the dataflow network

is deterministic;
reacts only to complete sets of inputs;
has no memory

It is then sufficient to adopt a function from inputs to outputs as the
semantic domain:

IOfunc : I → O

For our example language

IOfunc : Nat → Nat

defined by
IOfunc(n) = n(n + 1)/2.

17



(Modelling) Semantics of Modelling Languages

Semantic Domain: Dataflow Diagrams

Another semantic domain could be the set of traces, which includes
observations of inputs and outputs in an interleaved manner:

IOtrace = {x |x ∈ (I ∪O)∗}

where * denotes Kleene iteration

18



(Modelling) Semantics of Modelling Languages

Abstract syntax
“essence”, “in memory”

Requirements for semantic mapping function

total (defined for all elements of language)
unique (single meaning) . . .
how about non-deterministic semantics?

19



(Modelling) Semantics of Modelling Languages

Degree Of Formality

20



(Modelling) Semantics of Modelling Languages

Operational vs. Denotational (Translational) semantics

NATO’s Sarajevo Waste Water Treatment Plant
www.nato.int/sfor/cimic/env-pro/waterpla.htm

21



(Modelling) Semantics of Modelling Languages

What does this WWTP model mean?
influent

mixer
aeration_tank

settler effluent

f_influent f_mixed f_processed f_out

f_bacteria

22



(Modelling) Semantics of Modelling Languages

semantic mapping of WWTP onto . . .
influent

f_influent

f_influent

C_influent

0.0

OUT

mixer

f_influent

f_bacteria

f_mixed

f_bacteria

f_influent f_mixed

I OUT

C_aeration

0.9

aeration_tank

f_mixed

aeration_fraction

f_processed

f_processedf_mixed

T
R

A
N

S
F

O
R

M

T
R

A
N

S
F

O
R

M

T
R

A
N

S
F

O
R

M

23



(Modelling) Semantics of Modelling Languages

. . . its meaning (steady-state abstraction):
Causal Block Diagram (CBD)

C_influent

10.0 OUT

C_settling

0.6

I OUT

I OUT

−

1.0

OUT

effluent
I OUT

f_influent

f_bacteria

f_mixed

settling_fraction

one

negated dump_fractionf_out

C_aeration

0.9

aeration_fraction

f_processed

24



(Modelling) Semantics of Modelling Languages

Meaning of the CBD . . . semantic mapping onto algEqns


 C_influent

10.0 OUT

C_bacteria

1.0

C_settling

0.6

I OUT

I OUT

−

1.0

OUT

effluent

dump

I OUT

f_influent

f_bacteria

f_mixed

settling_fraction

one

negated

dump_fraction

f_dump

f_out

C_aeration

0.9

aeration_fraction

f_processed


 =



f_influent = C_influent
f_bacteria = C_bacteria

f_mixed = f_influent + f_bacteria
aeration_fraction = C_aeration

f_processed = aeration_fraction ∗ f_mixed
settling_fraction = C_settling

negated = −settling_fraction
one = 1

dump_fraction = one + negated
f_dump = f_processed ∗ dump_fraction

f_out = settling_fraction ∗ f_processed

25



(Modelling) Semantics of Modelling Languages

Misconception 1: Semantics is the metamodel
A metamodel is a model of a language’s (abstract) syntax.
A semantic domain as well as a semantic mapping are still required.
Note that in practice

1 the semantic domain’s syntax is also given by means of a
metamodel;

2 the semantic mapping is described at the meta-level as a
transformation between syntactic elements of the language
and its semantic domain.

26



(Modelling) Semantics of Modelling Languages

Misconception 2: Semantics is the semantic domain
Using semantics and semantic domain interchangeably is erroneous,
since it avoids the most crucial part of the semantics–the semantic
mapping.

27



(Modelling) Semantics of Modelling Languages

Misconception 3: Semantics is the context conditions
This use of the term has its roots in compiler theory, where everything
beyond the basic context-free grammar is viewed as semantics.
It seems to have had a great influence on the way the Object
Constraint Language constraints are used on top of the UML’s
metamodel.
In the UML standardization documents, static semantics is used
instead of context conditions.
This does not entail a semantic domain nor a semantic mapping. It
simply further constrains the syntax.

28



(Modelling) Semantics of Modelling Languages

Misconception 4: Semantics is dealing with behaviour
For some languages, semantics explains behaviour. However,
structure description languages, for example, don’t talk about
behaviour, but they still need semantics. Semantics and behaviour are
not to be confused.

29



(Modelling) Semantics of Modelling Languages

Misconception 5: Semantics is being executable

Taking the previous point one step further, some people equate having
semantics with being executable.
Clearly, if a language is executable, it probably has an adequate
semantics, although that semantics might not have been given an
adequately clear representation. However, not all languages specify
behaviour, and not all those that do so are (or need to be) executable.
Also, even if the language is meant to be executable, it can have a
nonexecutable, denotational semantics.

30



(Modelling) Semantics of Modelling Languages

Misconception 6: Semantics is the behaviour of a system
Sometimes people talk about the semantics of a particular system –
the way it behaves, its reaction time, and so on. This is quite different
from the semantics of the languages used to describe that system.

31



(Modelling) Semantics of Modelling Languages

Misconception 7: Semantics is the meaning of individual constructs

People often refer to the semantics of some part of the language, even
just one construct. Clearly, there is much more to semantics than that.

32



(Modelling) Semantics of Modelling Languages

Misconception 8: Semantics means looking mathematical

When some people see that parts of a language definition have
mathematical symbols, they are convinced that it is probably also
precisely defined. This is simply not true.

33



(Modelling) Semantics of Modelling Languages

Deciding on terminology

34



(Modelling) Semantics of Modelling Languages

What’s in a name ? Language

35



(Modelling) Semantics of Modelling Languages

What’s in a name ? Formalism

36



(Modelling) Semantics of Modelling Languages

What’s in a name ? Base Formalism

37



(Modelling) Semantics of Modelling Languages

What’s in a name ? Concrete Language

38



(Modelling) Semantics of Modelling Languages

What’s in a name ? Concrete Formalism

39



(Modelling) Semantics of Modelling Languages

Modelling a Modelling Language/Formalism

40



(Modelling) Semantics of Modelling Languages

Graph Grammars
to Specify Model Transformations
Rationale:
Models are often graph-like⇒ natural to express model transformation
by means of graph transformation models.
Ehrig, H., G. Engels, H.-J. Kreowski, and G. Rozenberg.
Handbook of graph grammars and computing by graph
transformation.
1999. World Scientific.
Tools:
GME/GReAT, PROGRES, AGG, AToM3, Fujaba, GROOVE, . . .
First two used (and Fujaba) in large industrial applications.

41



(Modelling) Semantics of Modelling Languages

Model Operational Semantics using GG

42



(Modelling) Semantics of Modelling Languages

PacMan Die rule

43



(Modelling) Semantics of Modelling Languages

PacMan Die rule LHS

2

4

1

3

5

44



(Modelling) Semantics of Modelling Languages

PacMan Die rule RHS

1

3

5

45



(Modelling) Semantics of Modelling Languages

PacMan Eat rule LHS

2

5

1

3

4

46



(Modelling) Semantics of Modelling Languages

PacMan Eat rule RHS

2

5

1

scoreBoard = None
scoreBoards = atom3i.ASGroot.listNodes[’ScoreBoard’]
if (not scoreBoards):
return

else:
scoreBoard = scoreBoards[0]
scoreVal = scoreBoard.score.getValue()
scoreBoard.score.setValue(scoreVal+1)
scoreBoard.graphObject_.ModifyAttribute(’score’,scoreVal+1)

47



(Modelling) Semantics of Modelling Languages

PacMan Move rule LHS
7

8

6 9

10

48



(Modelling) Semantics of Modelling Languages

PacMan Move rule RHS
7

1

6 9

10

49



(Modelling) Semantics of Modelling Languages

Formalism Transformation Example:
Model/Analyze/Simulate Traffic Networks

50



(Modelling) Semantics of Modelling Languages

Un-timed and timed Traffic meta-model
(a UML Class Diagram)

FlowTo

+ name: String
+ num_vehicles: Integer

Sink

TimedRoadSectionTrafficLight
+ State: {green, red}

TimedSource
+ inter_arrival_time: Float

+ name: String
+ num_vehicles: Integer
+ infinite_supply: Bool

Source

+ name: String
+ capacity: Integer

Capacity

+ name: String
+ num_vehicles: Integer

RoadSection

+ state: {normal, added
0..*

Section2Sink
0..1 0..*

0..*

0..*
TimedFlowTo

+ length: Float
+ velocity_limit: Float

0..*

0..*

0..1 Source2Section 0..*

ControlledSection 0..1

0..1 D
ire

ct
io

n

TimedTrafficLight
+ timing_red: Float
+ timing_green: Float

0..*

1..*

CapacityOf
+ updated: Bool

Synchronized

0..1
0..1

0..*
           , removed}

51



(Modelling) Semantics of Modelling Languages

Traffic Concrete Syntax
(the Capacity Entity)

52



(Modelling) Semantics of Modelling Languages

Synthesized Traffic
Visual Modelling Environment

53



(Modelling) Semantics of Modelling Languages

Modelling Traffic’s Semantics

choices: timed, un-timed, . . . (level of abstraction)
denotational: map onto known formalism (TTPN, PN)
. . . good for analysis purposes
operational: procedure to execute/simulate model
. . . may act as a reference implementation
note: need to prove consistency between denotational and
operational semantics if both are given !

54



(Modelling) Semantics of Modelling Languages

Place-Transition Petri Net Abstract Syntax
(UML Class Diagram formalism)

PetriNet

+addPlace()
+addTransition()
+addArc(weight:int=1)
+draw()

Place
+name: String
+numTokens (marking): int = 0
+draw()

places
0..*

1

unique name

Transition
+name: String
+enabled: Boolean
+draw()

transitions
0..*

1

unique name

0..* 1

1 0..*

Arc
+weight: int = 1
+draw()

55



(Modelling) Semantics of Modelling Languages

Place-Transition Petri Net Concrete Syntax

place1
2

place2
1

transition

2

56



(Modelling) Semantics of Modelling Languages

Petri Net Behaviour
State Transition Function f of marked Petri net (P, T , A, w , x0)

f : Nn × T → Nn

is defined for transition tj ∈ T if and only if

x(pi) ≥ w(pi , tj),∀pi ∈ I(tj)

If f (x, tj) is defined, set x′ = f (x, tj) where

x ′(pi) = x(pi)− w(pi , tj) + w(tj , pi)

State transition function f based on structure of Petri net
Number of tokens need not be conserved (but can)

57



(Modelling) Semantics of Modelling Languages

Behaviour: Fork

p1
0

p2
0

p3
1

t1

58



(Modelling) Semantics of Modelling Languages

Behaviour: Join

p1
1

p2
1

t1

59



(Modelling) Semantics of Modelling Languages

Behaviour: Conflict, choice, decision

p3
1

p1
0

p2
0

t1 t2

60



(Modelling) Semantics of Modelling Languages

Behaviour: Concurrency

t1 t2

p11
1

p21
1

p12
0

p22
0

61



(Modelling) Semantics of Modelling Languages

The Big Picture: Transformations

neglect tim
e

Traffic (un-timed)

Place-Transition Petri Nets

Coverability Graph

describe semantics
by mapping onto

compute all
possible behaviours

simulate

simulate

analyze:
reachability,
coverability, ...

describ
e semantics

by mapping onto

simulate

DEVS

map onto

map onto Timed Transition Petri Nets

de
sc

rib
e 

se
m

an
tic

s

by
 m

ap
pi

ng
 o

nt
o

simulate
analyze

describe semantics
by mapping onto

TINA

simulate
analyze

pythonDEVS

simulate

DEVSJava

simulate

TimedTraffic

simulate

62



(Modelling) Semantics of Modelling Languages

Traffic’s (un-timed) semantics
in terms of Petri Nets

need a meta-model of Traffic (shown before)
need a meta-model of Petri Nets (shown before)
need a meta-model of Generic Graph (glue)
need a model of the mapping: Traffic⇒ Petri Net

63



(Modelling) Semantics of Modelling Languages

A very simple Traffic model

2
segment1

1
segment2

4
capacity

64



(Modelling) Semantics of Modelling Languages

Traffic to Petri Net Graph Grammar rules
INITIAL ACTION:
for node in graph.listNodes["RoadSection"]:
 node.vehiclesPNPlaceGenerated=False

65



(Modelling) Semantics of Modelling Languages

Traffic to Petri Net Graph Grammar rules

<ANY>
<ANY>

1

LHS

rule1: RoadSection2PNPlace

CONDITION:
node = LHS.nodeWithLabel(1)
return not node.vehiclesPNPlaceGenerated

ACTION:
node = RHS.nodeWithLabel(1)
node.vehiclesPNPlaceGenerated = True

<COPIED>
<COPIED>

<SPECIFIED>
<SPECIFIED>

1

2

3

RHS

LHS.nodeWithLabel(1)).name

LHS.nodeWithLabel(1)).num_vehicles

66



(Modelling) Semantics of Modelling Languages

Road Sections converted to Petri Net Places
2

segment1

1
segment2

4
capacity

segment1
2

segment2
1

67



(Modelling) Semantics of Modelling Languages

Traffic to Petri Net Graph Grammar rules

<ANY>
<ANY>

<ANY>
<ANY>

<ANY>
<ANY>

<ANY>
<ANY>

1 2
7

3 4

5 6

LHS

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>
<COPIED>

0

1 2

10
3 4

9

5 6

8

RHS

rule 2: Flow2PNTransition

CONDITION:
node = getMatched(LHS.nodeWithLabel(1))
return node.in_connections_ == []

ACTION:
node = RHS.nodeWithLabel(1)
node.capacityPNPlaceGenerated = True

68



(Modelling) Semantics of Modelling Languages

Traffic Flow to Petri Net Transitions
2

segment1

1
segment2

4
capacity

segment1
2

segment2
1

69



(Modelling) Semantics of Modelling Languages

Traffic to Petri Net Graph Grammar rules

rule 3: Capacity2PNPlace
<COPIED>

<COPIED> <SPECIFIED>
<SPECIFIED>

1 2
3

RHS LHS.nodeWithLabel(1)).name

LHS.nodeWithLabel(1)).capacity

<ANY>
<ANY>

1

LHS

70



(Modelling) Semantics of Modelling Languages

Traffic Capacity to Petri Net Place

2
segment1

1
segment2

4
capacity

segment1
2

segment2
1

capacity
4

71



(Modelling) Semantics of Modelling Languages

Traffic to Petri Net Graph Grammar rules

<ANY>
<ANY>

<ANY>
<ANY> <ANY>

<ANY>

4

1

5

2
3

LHS

<COPIED>
<COPIED>

<COPIED>
<COPIED> <COPIED>

<COPIED>

4

1

6

2
3

RHS

rule 4: Capacity2PNPlaceLinks

72



(Modelling) Semantics of Modelling Languages

Traffic Capacity to Petri Net Place (links)

2
segment1

1
segment2

4
capacity

segment1
2

segment2
1

capacity
4

73



(Modelling) Semantics of Modelling Languages

Traffic to Petri Net Graph Grammar rules

<ANY>
<ANY> <ANY>

<ANY>
1 2

3

LHS <COPIED>
<COPIED>

2

RHS

rule 5: Capacity2PNPlaceCleanup

74



(Modelling) Semantics of Modelling Languages

Traffic Capacity to Petri Net Place cleanup

2
segment1

1
segment2

segment1
2

segment2
1

capacity
4

75



(Modelling) Semantics of Modelling Languages

Traffic to Petri Net Graph Grammar rules

<ANY>
<ANY>

<ANY>
<ANY>

<ANY>
<ANY>

<ANY>

<ANY>

1
7

2

6

5

3

4

LHS

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>

<COPIED>

1

8

7

2

6

5

3

4

RHS

rule 6: CapacityConstraintOnPl2Tr

CONDITION:
cap_place = LHS.nodeWithLabel(6)
out_trans = LHS.nodeWithLabel(4)
capacity_transition_absent = True
for in_link in cap_place.in_connections_:
 for out_link in out_trans.out_connections_:
  if (in_link == out_link) and 
      isinstance(in_link,tran2pl): 
   capacity_transition_absent = False
   break
return capacity_transition_absent

76



(Modelling) Semantics of Modelling Languages

Capacity Constraint on Place to Transition

2
segment1

1
segment2

segment1
2

segment2
1

capacity
4

77



(Modelling) Semantics of Modelling Languages

Traffic to Petri Net Graph Grammar rules

<ANY>
<ANY>

<ANY>
<ANY>

<ANY>

<ANY>
<ANY>

<ANY>

1

5

7

2

6

4

3

LHS

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>

1

5

7

2

6

4

8

3

RHS

rule 7: CapacityConstraintOnTr2Pl

CONDITION:
cap_place = LHS.nodeWithLabel(6)
in_trans = LHS.nodeWithLabel(4)
capacity_transition_absent = True
for out_link in cap_place.out_connections_:
 for in_link in in_trans.in_connections_:
  if (in_link == out_link) and 
      isinstance(in_link, pl2tran): 
   capacity_transition_absent = False
   break
return capacity_transition_absent

78



(Modelling) Semantics of Modelling Languages

Capacity Constraint on Transition to Place

2
segment1

1
segment2

segment1
2

segment2
1

capacity
4

79



(Modelling) Semantics of Modelling Languages

Traffic to Petri Net Graph Grammar rules

rule 8: InitialCapacity

<COPIED>
<COPIED> <COPIED>

<SPECIFIED>
1

2

RHS

initial_num_vehicles = LHS.nodeWithLabel(1).num_vehicles
capacity_tokens = LHS.nodeWithLabel(2).tokens
return capacity_tokens-initial_num_vehicles

<ANY>
<ANY> <ANY>

<ANY>
1

3
2

LHS

80



(Modelling) Semantics of Modelling Languages

Model Initial Capacity (applied rule twice)

2
segment1

1
segment2

segment1
2

segment2
1

capacity
1

81



(Modelling) Semantics of Modelling Languages

Traffic to Petri Net Graph Grammar rules
<ANY>

<ANY>

1

2LHS RHS

rule 9: RemoveRoadSection

82



(Modelling) Semantics of Modelling Languages

Removed Traffic Road Section,
now only Petri Net

segment1
2

segment2
1

capacity
1

83



(Modelling) Semantics of Modelling Languages

Static Analysis of the Transformation Model
The transformation specified by the Graph Grammar model must
satisfy the following requirements:

Termination:
the transformation process is finite
Convergence/Uniqueness:
the transformation results in a single target model
Syntactic Consistency:
the target model must be exclusively in the target formalism

These properties can often (but not always)
be statically checked/proved.

84



(Modelling) Semantics of Modelling Languages

Un-timed Analysis

neglect tim
e

Timed Transition Petri Nets

Traffic (timed)

Traffic (un-timed)

Place-Transition Petri Nets

Coverability Graph

de
sc

rib
e 

se
m

an
tic

s

by
 m

ap
pi

ng
 o

nt
o

describe semantics
by mapping onto

compute all
possible behaviours

simulate

simulate

simulate

analyze:
reachability,
coverability, ...

simulate
analyze

85



(Modelling) Semantics of Modelling Languages

An un-timed Traffic model

0
bot_W2E

0
turn1

0
to_N_or_W

0
turn2

0
bot_N2S

2
cars

1
bot_CAP 1

turn1_CAP

1
top_CAP

1
turn2_CAP

86



(Modelling) Semantics of Modelling Languages

the Petri Net describing its behaviour
obtained by Graph Rewriting

bot_W2E
0

turn1
0

to_N_or_W
0

turn2
0

bot_N2S
0

cars
2

bot_W2E_dep

top_S2W_dep

bot_N2S_dep

top_arr
bot_N2S_arr

bot_W2E_arr

top_S2N_dep

bot_CAP
1

turn1_CAP
1

top_CAP
1

turn2_CAP
1

87



(Modelling) Semantics of Modelling Languages

Analysis: Coverability Graph of the Petri Net
[turn1_CAP, cars(2), bot_CAP, top_CAP, turn2_CAP]

[turn1_CAP, cars, bot_W2E, top_CAP, turn2_CAP]

bot_W2E_arr

[cars, turn1, bot_CAP, top_CAP, turn2_CAP]

bot_W2E_dep

[turn1_CAP, cars, bot_CAP, turn2_CAP, to_N_or_W]

top_arr

[turn1_CAP, turn2, cars, bot_CAP, top_CAP]

top_S2W_dep

[turn1_CAP, cars, top_CAP, turn2_CAP, bot_N2S]

bot_N2S_arr
bot_N2S_dep

[turn1_CAP, turn2, bot_W2E, top_CAP]

bot_W2E_arr

[turn2, turn1, bot_CAP, top_CAP]

bot_W2E_dep

[turn1_CAP, turn2, bot_CAP, to_N_or_W]

top_arr

[turn1_CAP, turn2_CAP, bot_N2S, to_N_or_W]

bot_N2S_arr

[turn1_CAP, turn2, top_CAP, bot_N2S]

top_S2W_dep

bot_N2S_dep

bot_N2S_dep

top_S2N_dep

top_S2N_dep

[turn1, top_CAP, turn2_CAP, bot_N2S]

bot_N2S_arr
bot_N2S_dep

top_arr

[turn1_CAP, bot_W2E, turn2_CAP, to_N_or_W]

bot_W2E_arr

[turn1, bot_CAP, turn2_CAP, to_N_or_W]

bot_W2E_dep

top_S2W_dep

top_S2N_dep

top_S2W_dep

top_S2N_dep

top_S2N_dep

[turn1, bot_W2E, top_CAP, turn2_CAP]

bot_W2E_arr

top_arr

88



(Modelling) Semantics of Modelling Languages

Liveness Analysis
[turn1_CAP, cars(2), bot_CAP, top_CAP, turn2_CAP]

[turn1_CAP, cars, bot_W2E, top_CAP, turn2_CAP]

bot_W2E_arr

[cars, turn1, bot_CAP, top_CAP, turn2_CAP]

bot_W2E_dep

[turn1_CAP, cars, bot_CAP, turn2_CAP, to_N_or_W]

top_arr

[turn1_CAP, turn2, cars, bot_CAP, top_CAP]

top_S2W_dep

[turn1_CAP, cars, top_CAP, turn2_CAP, bot_N2S]

bot_N2S_arr
bot_N2S_dep

[turn1_CAP, turn2, bot_W2E, top_CAP]

bot_W2E_arr

[turn2, turn1, bot_CAP, top_CAP]

bot_W2E_dep

[turn1_CAP, turn2, bot_CAP, to_N_or_W]

top_arr

[turn1_CAP, turn2_CAP, bot_N2S, to_N_or_W]

bot_N2S_arr

[turn1_CAP, turn2, top_CAP, bot_N2S]

top_S2W_dep

bot_N2S_dep

bot_N2S_dep

top_S2N_dep

top_S2N_dep

[turn1, top_CAP, turn2_CAP, bot_N2S]

bot_N2S_arr
bot_N2S_dep

top_arr

[turn1_CAP, bot_W2E, turn2_CAP, to_N_or_W]

bot_W2E_arr

[turn1, bot_CAP, turn2_CAP, to_N_or_W]

bot_W2E_dep

top_S2W_dep

top_S2N_dep

top_S2W_dep

top_S2N_dep

top_S2N_dep

[turn1, bot_W2E, top_CAP, turn2_CAP]

bot_W2E_arr

top_arr

89



(Modelling) Semantics of Modelling Languages

Conservation Analysis
1.0 x[turn1_CAP] + 1.0 x[turn1] = 1.0

1.0 x[cars] + 1.0 x[bot_W2E] +
1.0 x[turn1] + 1.0 x[to_N_or_W] +
1.0 x[turn2] + 1.0 x[bot_N2S] = 2.0

1.0 x[top_CAP] + 1.0 x[to_N_or_W] = 1.0

1.0 x[turn2_CAP] + 1.0 x[turn2] = 1.0

1.0 x[bot_CAP] +
1.0 x[bot_W2E] + 1.0 x[bot_N2S] = 1.0

90



(Modelling) Semantics of Modelling Languages

Timed Traffic Network

91



(Modelling) Semantics of Modelling Languages

Mapping onto DEVS for Simulation
(performance Analysis)

neglect tim
e

Traffic (un-timed)

Place-Transition Petri Nets

Coverability Graph

describe semantics
by mapping onto

compute all
possible behaviours

simulate

simulate

analyze:
reachability,
coverability, ...

describ
e semantics

by mapping onto

simulate

DEVS

map onto

map onto Timed Transition Petri Nets

de
sc

rib
e 

se
m

an
tic

s

by
 m

ap
pi

ng
 o

nt
o

simulate
analyze

describe semantics
by mapping onto

TINA

simulate
analyze

pythonDEVS

simulate

DEVSJava

simulate

TimedTraffic

simulate

92



(Modelling) Semantics of Modelling Languages

Traffic mapped onto a DEVS model

93



(Modelling) Semantics of Modelling Languages

Conclusions
1 Through anecdotal evidence, demonstrated the usefulness

of Domain-Specific Visual Modelling in the broad context
of CAMPaM.

2 Demonstrated feasibility of rapidly and re-usably building
Domain-Specific Visual Modelling, Analysis, Simulation tools
using meta-modelling and graph rewriting.

model everything !

94



(Modelling) Semantics of Modelling Languages

95


	Information and Data
	Syntax and Semantics

