
A language for modeling constraints of characteristics
in complex heterogeneous systems

Bart Cools

University of Antwerp

bart.cools@student.uantwerpen.be

Abstract

When trying to model everything, obstacles will occur in every step of the

process. One large hurdle is the combination of multiple systems, created by

different fields, into one large working model. Work has been done on creating

these systems, together with tackling inconsistencies in the constraints as soon

as possible. One problem with these solutions is that information might get

cluttered and hard to see with so much relationships between attributes. In

this paper we attempt to tackle this problem by finding a way to resolve this

problem by creating an extra step in the process: a textual modeling language

to maintain these systems. This reading report is a stepping stone to the actual

implementation in future work.

Keywords: textual modeling, modeling constraints, inconsistency

management, xtext

Preprint submitted to Journal of LATEX Templates December 15, 2017



1. Introduction

In the philosophy of ”Model Everything”, a lot of hurdles need to be tackled.

One approach of a modeling task is to use the top-down MDE approach: you

should start by building domain specific structural and behavioral models of the

system under development [1]. Following these models, you also have to allow

changes on these models, the Model Transformations, often referred to as the

heart of MDE [2]. A new problem occurs when we have to model a larger, com-

plex system. When we want to model a car, we have different kinds of systems

that have to be modeled, most of them in their own modeling environment. We

are talking here about electrical systems, mechanical systems, geometric sys-

tems and so on. All of these systems are designed and maintained by different

teams, but eventually one large, complex system will have to be created, incor-

porating all these different systems into one working model. When we combine

all these different systems and describe the transformations working on - and

between - those different models, we can talk about FTG-PM, which is short for

Formalism Transformation Graph - Process Modeling. We model the process of

these different systems and combine them together into creating, for example,

a working car. One problem when combining different systems is to keep track

of the major dependencies in systems, and after combining multiple systems,

also the implicit dependencies and relationships that one decision might bring

to the other systems.

This paper is structured as follows. Section 2 contains the related work, where

we will go over the work already done on this subject. Section 3 will handle why

we chose to do this project and which benefits it will bring to the researching

world. Section 4 discusses what tools we will use and how we will setup the

experiment. Finally, section 5 will recap everything discussed in the paper and

handle the next step in this project.

2



Figure 1: The automated guided vehicle (AGV)[3]

2. Related Work

One problem we found, which is also addressed in [4][5][6][3], is the inconsis-

tencies in choices made that could influence different systems outside of the

scope of that first system in which the decision was made in. When we take

the example of building an automated guided vehicle (AGV) used in [3] (as can

be seen in figure 1), we can illustrate the inconsistency problem with an exam-

ple. The total mass of the AGV is defined as to be the mass of the platform

used, the mass of the motor and the mass of the battery. All three of these

elements are part of the same mechanical model, so we do not have to worry

about cross-system inconsistencies, which we will deem outside the scope of this

paper. We have multiple constraints on the mass of all these separate parts

of the mechanical model, but on top of that, we have a totalMass constraint

on the AGV itself. One of the problems that [3] tries to solve is to solve con-

straints in the enactment phase, so at runtime. This can be seen that, when

totalMass <= 150[kg], platformMass = 100[kg] and motorMass = 50[kg], no

matter what the mass of the battery will be, the constraint of the totalMass will

always be violated, since mass > 0 is also a constraint, this time a constraint

based on the laws of physics. When putting all of this together, we get a model

like figure 2, with a closer view on the constraints in figure 2.

3



Figure 2: Overview of the FTG+PM with capabilities (left), attributes and constraints (right)

[3]

Figure 3: Constraints imposed regarding the mass of the system[3]

4



When we talk about constraints, an extra difficulty we have to address are

the different levels of precision constraints that are available. In [3], only L3

constraints, which are constraints that are mathematically expressible, are con-

sidered.

3. Motivation

On figure 2, we can see the capabilities on the left and attributes (and con-

straints) on the right, separated by the activities or processes in the middle.

When we take into account that this is just the model of a small but complex

system, it is easy to see that these models can become extremely cluttered for

larger, more complex systems. This will hinder usability, which can be seen in

figure 3, since it’s harder to make sense of all the connections and elements,

but maybe even more so will make the maintainability and adaptability a lot

harder. For example, adding a constraint might mean finding some attribute

from a certain system and associate it with some other attribute. One of the

approaches to tackle this problem is to use combine the visual syntax with a

modeling language to extend and maintain the models. This way we can write

the attributes, rules and constraints in a very concise and textual manner, but

after transforming we can still see the visual syntax to see the big overview. We

will test this out and see the potential benefits from this new approach.

4. Experimental Setup

[7] proposes different formalisms to use textual modeling. TEF (Textual Editing

Framework) [8], EMFText [9] and MPS (Meta Programming Systems)[10] are

some of the formalisms described. For the purpose of this paper, we decided to

use Xtext[11], mainly because it’s a major part of the Eclipse TMF (Textual

Modeling Framework). Since most of our experience in modeling comes from

the Eclipse framework and the paper on which we base this report also uses

Eclipse as their main tool for their models, we decided Xtext would be the most

appropriate formalism to use in this case. We can’t say that it’s overall the

5



Figure 4: Overview of FTG+PM for a small complex system

most appropriate formalism, since this would require deeper research into the

other formalisms, which is outside of the scope of this project. We will use the

Eclipse framework to create a modeling language using Xtext.

5. Conclusion and Future Work

Most of the conclusions will be drawn after the second step of the project, which

will address the actual implementation of the textual modeling language. The

next steps will consist of using an iterative and incremental approach to write

a grammar in Backus-Naur Form[12]. After we figured out a valid and working

grammar and syntax, we will use the example used in this paper, coming from

[3] to test our findings and figure out the usability and maintainability of our

approach. We will at this time also determine which levels of constraints we will

support. L3 will most certainly be supported. Since this can be decoupled from

the actual language, we will most likely make the precision levels of constraints

generalizable, meaning that the language can specify the precision, but the run

6



time behavior is of course solved by the system itself.

References

[1] L. Lúcio, S. Mustafiz, J. Denil, H. Vangheluwe, M. Jukss, FTG+PM:

An Integrated Framework for Investigating Model Transformation Chains,

Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 182–202. doi:

10.1007/978-3-642-38911-5_11.

URL https://doi.org/10.1007/978-3-642-38911-5_11

[2] S. Sendall, W. Kozaczynski, Model transformation: The heart and soul of

model-driven software development, IEEE software 20 (5) (2003) 42–45.

[3] I. Dávid, B. Meyers, K. Vanherpen, Y. V. Tendeloo, K. Berx,

H. Vangheluwe, Modeling and enactment support for early detection of

inconsistencies in engineering processes.

[4] I. Dávid, J. Denil, H. Vangheluwe, Towards inconsistency management by

process-oriented dependency modeling., in: GEMOC+ MPM@ MoDELS,

2015, pp. 32–41.

[5] I. Dávid, J. Denil, K. Gadeyne, H. Vangheluwe, Engineering process trans-

formation to manage (in) consistency., in: COMMitMDE@ MoDELS, 2016,

pp. 7–16.

[6] I. Dávid, E. Syriani, C. Verbrugge, D. Buchs, D. Blouin, A. Cicchetti,

K. Vanherpen, Towards inconsistency tolerance by quantification of seman-

tic inconsistencies., in: COMMitMDE@ MoDELS, 2016, pp. 35–44.

[7] B. Merkle, Textual modeling tools: Overview and comparison of language

workbenches, in: Proceedings of the ACM International Conference Com-

panion on Object Oriented Programming Systems Languages and Appli-

cations Companion, OOPSLA ’10, ACM, New York, NY, USA, 2010, pp.

139–148. doi:10.1145/1869542.1869564.

URL http://doi.acm.org/10.1145/1869542.1869564

7

https://doi.org/10.1007/978-3-642-38911-5_11
https://doi.org/10.1007/978-3-642-38911-5_11
http://dx.doi.org/10.1007/978-3-642-38911-5_11
http://dx.doi.org/10.1007/978-3-642-38911-5_11
https://doi.org/10.1007/978-3-642-38911-5_11
http://doi.acm.org/10.1145/1869542.1869564
http://doi.acm.org/10.1145/1869542.1869564
http://dx.doi.org/10.1145/1869542.1869564
http://doi.acm.org/10.1145/1869542.1869564


[8] Textual editing framework, https://www2.informatik.hu-berlin.de/

sam/meta-tools/tef/tool.html, accessed: 2017-12-14.

[9] Emftext, http://www.emftext.org/, accessed: 2017-12-14.

[10] Jetbrains’ meta programming systems, https://www.jetbrains.com/

mps/, accessed: 2017-12-14.

[11] Eclipse’s xtext, https://www.eclipse.org/Xtext/, accessed: 2017-12-14.

[12] Backus-naur form, https://en.wikipedia.org/wiki/Backus%E2%80%

93Naur_form, accessed: 2017-12-14.

8

https://www2.informatik.hu-berlin.de/sam/meta-tools/tef/tool.html
https://www2.informatik.hu-berlin.de/sam/meta-tools/tef/tool.html
http://www.emftext.org/
https://www.jetbrains.com/mps/
https://www.jetbrains.com/mps/
https://www.eclipse.org/Xtext/
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

	Introduction
	Related Work
	Motivation
	Experimental Setup
	Conclusion and Future Work

