
Layered Programming: A Language Independent
Variability Management Approach

J. De Pauw

University of Antwerp

joey.depauw@student.uantwerpen.be

C. Gomes

University of Antwerp

claudio.gomes@uantwerp.be

H. Vangheluwe

McGill University, University of Antwerp , Flanders Make
hv@cs.mcgill.ca

Abstract

Many techniques to implement software product lines exist. Examples are
feature-oriented programming, aspect-oriented programming and delta-oriented
programming. They are all bound to a specific set of source languages. We pro-
pose a way of encoding variability independent of the used language. The goal is
to simplify software product line implementation, making it accessible to non-
experts. A command line tool is used to achieve this goal, with an optional
plugin for FeatureIDE[18, 8].

Keywords: software product line, variability management, feature model,
domain implementation

Preprint submitted to Elsevier January 28, 2018

mailto:joey.depauw@student.uantwerpen.be
mailto:claudio.gomes@uantwerp.be
mailto:hv@cs.mcgill.ca


1. Introduction

Layered programming is the concept of writing code in layers. A software prod-
uct line is represented by a common base and a set of layers. A layer can be
seen as an overlay or delta to some program that adds, removes or changes
functionality. We use the name “layer” to represent a feature refinement. This
term is often used in the context of feature-oriented programming.[3]

It is possible to define a layer on top of another layer, providing a hierarchy.
Layers can also be independent of each other. They can then be combined with
specific semantics, encoded in a feature model. A Layer is defined by a reference
to its base layer and a set of differences with respect to the base.

Note that a layer is not limited to one language or one file. Every system has
multiple representations, like source code, makefiles, documentation and so on.
Adding a feature to a program should elaborate each of its representations so
they are all consistent.[3, 19] An example of this can be found in figure 1. Three
layers are defined that modify some source code and keep the documentation
consistent. Layer two is defined on top of layer one. Layer one and two are
independent of layer three.

Though the name “layered programming” suggests a programming paradigm,
it is more closely related to the category of tool support. The technique does
not aim to replace the need for a good SPL oriented architecture, but rather to
simplify the process of implementing, documenting, organizing and managing
the architecture.

Since the technique is language independent, it was tried on an extreme case:
the textual representation of models. For this experiment we used AToMPM[17],
a tool for multi-paradigm modelling.

In this study, we address following topics:

1. formal definition and workflow description
2. use cases for layered programming
3. implementation outline for a tool to support layered programming
4. analysis of the risks involved
5. effectiveness on textual representation of models

This paper is structured as follows. Section 2 contains the related work. In
section 3 a more detailed motivation is given. Sections 4 and 5 propose a working
example and explain the solution with layered programming respectively. In
section 6 an outline for the implementation is described and section 7 reports the
results of the prototype tool developed for this paper along with its integration
in FeatureIDE. An application for LP in the modelling field is discussed in
section 8. Finally section 9 concludes and section 10 lists future work.

2. Related Work

Birk et. al. investigated SPL practices in the software industry in their pa-
per from 2003[4]. They remark the following about SPL architecture and tool
support:

2



Figure 1: Visual representation of layered programming.

3



“All products should fit into the provided architecture and benefit from it. Un-
fortunately, the common architecture’s functionality, interfaces, and constraints
are usually abstract and complex. Not all the development organization’s mem-
bers or teams will understand them well. Not knowing the SPL architecture’s
capabilities inevitably leads to the architecture not being fully used.”

“Because requirements engineering for SPL can become highly complex, effec-
tive tool support is important. Existing tools dont satisfactorily support aspects
such as variability management, version management for requirements collec-
tions, management of different views on requirements, or dependency modeling
and evolution.”

Layered programming is a tool-supported technique to assist in SPL develop-
ment. One of the benefits is that the variability is not hidden away in different
files like in most other techniques. Programmers can immediately see all fea-
tures that affect the piece of code they are working on, preventing code clones
and duplicate features.

Since 2003 numerous tools for SPL engineering have been proposed, among
which CIDE[7], AHEAD[3], FeatureHouse[1], FeatureIDE[18, 8] and VariantSync[12].

The creation of CIDE was motivated by the problems of both compositional and
annotative approaches. It is an Eclipse-based prototype tool for decomposing
legacy applications into features that may have a fine granularity[7]. Features
are not annotated directly in the code (like preprocessor directives). CIDE
manages the feature information and indicates what code belongs to which
feature by using different background colors.

The workflow of this tool is closely related to that of layered programming. One
of the common advantages is that feature code is still placed where it extends
the program, and it is therefore obvious to see how it extends the program, it is
simple to understand how a feature is implemented. The main differences are
that CIDE uses language specific information (AST representation) to encode
features. The CIDE workflow starts with a fully composed application with all
features implemented in a single code base, typically a legacy application. It
then supports the removal of features to create an artifact. Layered program-
ming implements both bottom up and top down approaches to create software
product lines. Artifact are created by adding and combining features, rather
than removing them. One of the advantages of this, is that each feature is rep-
resented and implemented in the most stripped down version of the source code
as possible, minimizing complexity overhead from other features.

AHEAD shows that software can have an elegant, hierarchical mathematical
structure that is expressible as nested sets of equations. AHEAD tools are ca-
pable of generating Java and non-Java artifacts automatically from nested sets
of equations using the Jak-specific tools jampack or mixin.[3, 15] AHEAD uses
the Jak language to describe features and to compose them in layers. The tech-
nique described in this paper is language independent and does not introduce a
new language.

FeatureHouse is a general architecture of software composition supported by
a framework and tool chain. FeatureHouse provides facilities for feature com-
position based on a language-independent model of software artifacts and an

4



automatic plug-in mechanism for the integration of new artifact languages.[1]
This tool generalizes many feature-oriented approaches by providing the typical
extend/override mechanism on a language-independent model. It is a descen-
dant of Batorys AHEAD program generator.[1, 3]

FeatureIDE is arguably the most popular open-source framework for feature-
oriented software development (FOSD). It is based on Eclipse and supports
several FOSD implementation techniques such as feature-oriented programming,
aspect-oriented programming, delta-oriented programming, and preprocessors.[18]
Numerous other tools have been built on top of the FeatureIDE architecture
(e.g.: CIDE, VariantSync, BUT4Reuse).

Shaefer et. al present the idea of delta-oriented programming (DOP) and pure
DOP in [13, 14].

Delta-oriented programming is a flexible programming language approach. A
product line is represented by a core module and a set of delta modules. The core
module provides an implementation of a valid product that can be developed
with well-established single application engineering techniques. Delta modules
specify changes to be applied to the core module to implement further products
by adding, modifying and removing code. A product implementation for a
particular feature configuration is generated by applying incrementally all delta
modules to the core module.[13]

It relates to layered programming in the sense that it allows a programmer to
defined deltas (called layers in this paper) with respect to a core module. Deltas
are specified syntactically and grouped together by their functionality. The
technique described in this paper is purely tool-based and allows the definition
of features right in the core module.

Mezini et. al. address the shortcomings of classic object oriented development
in [9]:

“Classes as the traditional units of organization of object oriented software have
proved to be insufficient to capture entire features of the software in a modular
way. As a result, the last decade has seen quite a number of approaches that
concentrate on a more appropriate representation of features in the source code”

They explore language specific solutions like aspect oriented programming and
feature-oriented approaches in the context of variability management and inves-
tigate their shortcomings. Feature-oriented approaches are defined as a class of
approaches that concentrate on encapsulating features as increments over an ex-
isting base program, together with a mechanism for combining different features
on demand. Existing feature-oriented approaches (FOAs) include: GenVoca [2],
mixin layers [15, 16], delegation layers [11], and AHEAD [3].

The technique proposed in this paper can be classified as a language indepen-
dent feature-oriented approach, not to be confused with feature-oriented pro-
gramming.

In their paper from 2014, Thüm et. al. conclude that feature-oriented soft-
ware development (FOSD) provides several techniques for the implementation
of SPLs. But, each technique comes with advantages and disadvantages, and
that there is no consensus on the best technique.[18]

5



Like other techniques for domain implementation in SPLs, this one too has its
advantages and disadvantages. In section 3 it is compared to existing techniques.

3. Motivation

To overcome the increasing demand for tailored software systems, industrial
software development often uses clone-and-own to build a new variant by copy-
ing and adapting an existing variant. Indeed, this procedure is easy to use
and requires less up-front investments. However, with an increasing number of
variants, development becomes redundant and the maintenance effort rapidly
grows. Hence, at some point, a sufficient number of variants is reached and
the migration to a product line is necessary. However, using a product line to
develop variants has several downsides. First, product lines have high up-front
investments which make the development of few variants unprofitable. Hence,
introducing a product line would be a risky task that could not pay off if the
number of required variants is unknown at beginning of development.[12]

To overcome this problem, domain implementation techniques should not only
support proactive, but also reactive and extractive product line engineering.
In reactive product line engineering, only a basic set of products is developed.
When new customer requirements arise, the existing product line is evolved.
The extractive approach allows turning a set of existing legacy application into
a product line. Development starts with the existing products from which the
other products of the product line are derived. [14, 5]

Layered programming can assist in proactive, reactive and extractive product
line engineering. Once a feature has been identified, a layer can be derived
and extracted from existing code bases. Since this is a purely tool-based tech-
nique, there is no need to add code. Depending on the quality of the existing
architecture, refactoring may not even be required.

One of the hardest tasks in software product line engineer is complexity man-
agement. Often abstract and complex architectural designs are conceived to
support variability (e.g.: mixins and mixin layers) or new languages are invented
(e.g.: DeltaJ, Caesar, AHEAD). Complexity can even arise from extensive use
of preprocessor directives (#ifdef).

Though each of these techniques have their advantages and disadvantages, we
can conclude that they all add complexity to a software product line, making
domain implementation a task for SPL experts rather than domain or language
experts, which is counter intuitive. With the technique presented in this paper,
we aim to decrease the threshold for programmers to create software product
lines and simplify the transition form a single system to a family of systems.

The most prominent advantages are listed and described.

+ Easy To Use
With an intuitive GUI, there is virtually no learning curve to LP. There
is no new language to learn. No new structures or complex architectures.
The only thing that has to be mastered, is the workflow described in
section 5.

6



+ Semantically Clear
LP allows you to define and implement features in the same place you
would place them in single system development. This makes features easy
to implement, but also easy to find for other developers in the team. By
default only the minimal set of required features is visible while working
on a feature. This eliminates unneeded complexity from other features.
All possible interactions can still be visualized when needed.

+ Robust
This technique tries to keep all features consistent with each other. If
a file is modified, all files that depend on it are updated. When this is
not possible with high enough accuracy (due to a conflict for example),
the error is reported. In some cases, this may even be an indication the
developer did something wrong. For example remove a class that a feature
still depends on.

+ Timeless
No assumptions are made about the source language. In theory it works
and will work for all languages, even those to be created still.

The technique is no silver bullet. There are many scenarios where other tech-
niques outperform LP. These are some use cases where LP in its own does not
suffice:

- Crosscutting
Sometimes a feature increment that crosscuts the system is required. It is
not trivially possible to achieve this with LP.

- Large Files With Large Differences
The underlying implementation of LP is bound to the size of the input.
More so than most other techniques. In particular large files with a lot of
differences are harder to support.

- Runtime Variability
There is no support for runtime variability. It can however be used in
conjunction with other techniques that provide it.

4. Working Example

A common example used to demonstrate variability in software is that of a
Request System (RS).[9] For this purpose, we will consider three files: Person,
Database and Request. They are implemented in the Base feature. Other fea-
tures have been defined to interact with them as shown in the feature model in
figure 2. An implementation in Python is given in listing 1. The implementation
for the database is trivial and hence not included. Features Balance and Age
each add code to the Person. Only the interface of the Database is defined in
Base. Either SQLite or MySQL can be chosen as a back end. Finally there are
two features RequestPricing and RequestAgeLimit that modify how requests are
made.

7



Base/person.py

class Person:
def __init__(self , name):

self.name = name

Base/request.py

from database import Database
db = Database("[conn string]")

def makeRequest(query , person ):
result = db.execute(query)
return result

Balance/person.py

class Person:
def __init__(self , name):

self.name = name
self.balance = 0

def charge(self , x):
self.balance -= x

def deposit(self , x):
self.balance += x

RequestPricing/request.py

from database import Database
db = Database("[conn string]")

def makeRequest(query , person , price):
result = db.execute(query)
person.charge(price)
return result

Age/person.py

class Person:
def __init__(self , name , age):

self.name = name
self.age = age

RequestAgeLimit/request.py

from database import Database
db = Database("[conn string]")

def makeRequest(query , person ):
if person.age < 18:

return None

result = db.execute(query)
return result

Result/person.py

class Person:
def __init__(self , name , age):

self.name = name
self.age = age
self.balance = 0

def charge(self , x):
self.balance -= x

def deposit(self , x):
self.balance += x

Result/person.py

from database import Database
db = Database("[conn string]")

def makeRequest(query , person , price):
if person.age < 18:

return None

result = db.execute(query)
person.charge(price)
return result

Listing 1: Source code for RS family.

8



Figure 2: Feature model of example software project.

5. Workflow

This section show how LP can be used for the domain implementation part
of SPLE. There are three natural approaches to this: proactive, reactive and
extractive. Each of them is explained in its respective subsection.

5.1. Proactive

In this case, the workflow is very straightforward. The preceding domain anal-
ysis results in a feature model of all features and their interactions. These
can then be implemented top-down starting from the base. Artifacts can be
generated by selecting features from the feature model in a configuration and
combining them with a layered programming implementation as proposed in
section 6.

Unfortunately this methodology can be compared to the waterfall model in
software engineering and as stated earlier, it is not applicable in most cases.[12]

5.2. Reactive

A trickier case is reactive SPLE. We start from a basic feature model and want
to modify and extend it to support new requirements. Adding features is trivial,
since the workflow of proactive SPLE can be followed. Removing a feature, or
more realistically a branch of features, is also not an issue. A more complex
task is modifying a feature that other features depend on. This can be done by
recursively applying the changes made to each of the dependent features where
possible, as mentioned in the robustness trait in section 3.

Our working example was implemented like this. We started without the Age
branch and were easily able to include it along the way. Also some changes
to the base were made during development. This wasn’t an issue because all
dependent features updated without a problem.

9



5.3. Extractive

With extractive SPLE we start from a set of legacy applications (that most
likely originated from clone and own practices) and want to create the feature
model and implementations per feature. Composing the feature model falls
outside the scope of domain implementation and LP, so let’s assume that it is
possible to construct a FM from the requirements and legacy applications. We
then have different versions of the code and we know what features are present
in each of them.

From this it is possible to start deriving the features and eventually the base
following a simple methodology. Start with one legacy application and extract
one feature from it. That is, remove the text that belong to this feature. Then
generate a patch that represent the changes needed to add this feature. Continue
doing this until only the base is left. Now the minimal sets of code for each
feature can be constructed again bottom up by applying the patches as indicated
in the feature model. From these minimal code sets, more accurate patches can
be generated for future use. This can be done for all legacy applications to cover
all features. Different versions of features are best joined manually to select the
best parts of each legacy application.

It should be noted that this task is quite fuzzy and error prone. Theoretically
it should be possible though.

In the context of our working example, one could have two artifacts: one for
the combination {Balance, RequestPricing, SQLite} and one for {MySQL, Age,
RequestAgeLimit}. From these combinations and the feature model it is trivial
to extract each feature.

6. Implementation

Up until now, we have focused on what the desired result of layered programming
is. This section describes how it can be achieved. Three logical components are
required to realize the workflow described in section 5:

• a program for extracting/encoding layers and applying them
• an editor to manipulate different version of the code
• a feature model to describe layer hierarchy and valid combinations of layers

6.1. Program

Two elementary operations are needed to support all the features of layered
programming: extract and apply. Extract takes two files and produces a patch
to convert the first file into the second. Apply uses this patch and applies it to
a file. These operations closely relate to the diff and patch algorithms.

Some constraints have to be met on the implementation for extract and apply
operations to ensure a correct result:

• a patch needs to remain applicable under minor, independent changes to
its base

10



• conflicting patches need to be detected and reported, rather than being
applied anyways.

The first constraint is clearly needed in the case the base needs to be changed.
It is also needed because it has to be possible to apply multiple independent
patches consecutively. A degree of fault detection is ensured by the second
constraint. Patches are applied in a fuzzy way, based on the context, which is
allowed to change. Applying a patch in the wrong place can result in hard to
find and hard to fix bugs.

6.2. Editor

Multiple views on the sources are required for software product line implementa-
tion. Using LP, there is an instance of the entire project (with only the required
layers applied) available for every layer. The layer is edited from this view.
Though it is possible to just use existing text editors and the core program to
achieve this, an editor proves more efficient, especially for larger projects. This
editor does not only show the different views, but also keeps them consistent,
which prevents the programmer from forgetting to do this task manually.

A basic prototype of an editor was created as explained in section 7.

6.3. Feature Model

Finally it is clear to see that a way to both describe the hierarchy of layers and
interactions between them is required. The feature model formalism is most
appropriate for this purpose. Configuration files can also be validated against
feature models, providing a way to formally describe different artifacts.

7. Tool

A prototype tool was created to investigate the capabilities of layered program-
ming. This section discusses the development of the core tool and interesting
findings concerning its implementation. The core tool was also integrated to
FeatureIDE.

7.1. Core Tool

We first tried a possible implementation using the Linux diff and patch com-
mands. The diff command generates a patch file that can be used to turn one
file into the other with the patch command. Note that the -u flag was used to
make sure the unified format was used with a number of context lines.

We quickly discovered that the line difference calculated by the diff command
is not fine grained enough. Layers need to be allowed to make independent
changes on the same line like for example adding a parameter to a function.

Another option is to use a character based difference algorithm. Myers et. al.
proposed a performant algorithm for this in [10]. It is implemented in Google’s

11



Figure 3: FeatureIDE integration for LP.

diff-patch-match library[6]. However, allowing differences at the individual char-
acter level is not necessary for realistic use cases. Dividing the input in words
first, proves to be the most effective method. Common separators were used,
including spaces, tabs and most special characters like brackets, quotes, etc.
Programming languages usually work with tokens over individual characters as
well.

7.2. FeatureIDE Integration

This prototype tool was integrated into FeatureIDE[18, 8], an Eclipse plugin
for SPLE. It provides a feature model editor with support for creating different
configurations. Our plugin used the information encoded in the FM to call the
necessary functions of the core tool. A screenshot from the plugin with our
working example is included in figure 3.

FeatureIDE has so called “composers” that are responsible for the domain im-
plementation part of SPLE. Existing composers include AHEAD[3], AspectJ
and FeatureHouse[1] among others. Layered programming was added using the
extension point mechanism of Eclipse. This allows for callbacks when the fea-
ture model changed and when an artifact needs to be generated. For most
composers, this is enough. We also hooked a change listener to the project files
in order for the composer to be notified when a file is updated.

These callbacks are used to generate a minimal view on the project for each
feature and keep these views consistent w.r.t. each other during development.
For now this is done automatically in the background with very limited user
control. One of the benefits of this is that any developer can work on the
project. Knowledge about SPLE or experience with variability management
techniques is not required. However if anything goes wrong, a global error is
reported, but it remains hard to solve without more specific information and
more detailed control over the underlying algorithms. Eclipse has a built-in
“Compare Editor” that could be useful for this purpose.

The integration to FeatureIDE and Eclipse is not finished by far. Visual in-
dications for modified files, virtual files for storage saving and proper support

12



for mandatory features are some of the many features that still need to be
implemented to make the tool practical.

8. Application: AToMPM Models

The previous sections were motivated by applications in the programming do-
main. Code has a very rigid structure. Often the order of statements, includes
and declarations is important. It’s also interesting to look at applications in the
modelling field. Models posses a topological structure where order is often less
important. AToMPM[17] was used for this experiment.

As an example we chose the Petri Net formalism, of which many variants exist.
All of them share the basic idea of places and transitions connected with arcs.
Following variants were created in AToMPM:

Capacity
Adds an optional capacity to places. A place is not allowed to hold more
tokens than its capacity.

Color
Differentiates between types of tokens.

Inhibitor
Adds an new type of arc from place to transition. This inhibitor arc
prevents the transition from firing when tokens are present in the place.

Stochastic
Refines transitions into timed and immediate transitions which have a rate
and weight respectively.

For some use cases, a combination of these variants may be required. As a
demonstration we combined all of them together. Note that they are not inde-
pendent of each other. Interactions between variants would normally have to be
encoded in another feature and added to the feature model with a constraint.
Since we were only interested in combining them syntactically and not in seman-
tics, the interactions were not encoded. The result is a functional combination
of the variants, to which no meaning is assigned. Figure 5 shows the abstract
syntax model of the base Petri Net formalism and each of the variants as well
as the result of combining them.

Each modelling formalism has an abstract syntax and at least one concrete
syntax. Layered programming was also applied to the concrete syntax, but
without success. By omitting the stochastic PN feature, which was the largest,
it was possible however. There are two probable causes for this: the size of the
models and their encoding. It should be noted that everything is a model in
AToMPM and they are stored in Json format.

A lot of redundant information is stored, resulting in very large save files. The
largest abstract syntax model had 2468 lines and its concrete syntax counted
8253 lines. It is intuitive to see that it is more difficult for a diff algorithm to
handle large files and more important, large differences. Finding the correct
location to apply patches evidently becomes harder. Another aspect is the

13



Figure 4: Example Petri Net with all features.

presence of a lot of redundant and hence similar information. Finding the right
location to patch is hard when there are a lot of very similar locations.

Users work with model files in AToMPM, but they are compiled to so called
metamodel files internally. In essence this strips all information that is not
related to the model itself, like the position of a class in the class diagram or
the font of each text. Metamodel files are much smaller (224 and 913 lines for
the files mentioned earlier respectively).

It was possible for the layered programming prototype tool to combine the
compiled versions of the concrete syntax models. This indicates that there is
potential in the technique for models as well. It might even be easier because
of their topological nature. With an editable version of the abstract syntax and
compiled version of a concrete syntax, we were able to use the formalism. An
example of this is shown in figure 4.

9. Conclusion

The concept of layered programming was proposed in this exploratory study. Its
place in the bigger picture, context, motivation and applications were described.
Furthermore a prototype was built and tested on a Python program and a
larger modelling example, demonstrating the capabilities and usefulness of the
technique, as well as pointing out its flaws and points that require work.

We can conclude that there is potential in the technique, but a lot of risks
and uncertainties prevent it from being useful as of yet. The main issues are
instability and unpredictability. Further research is needed to see if these can
factors can be reduced to an acceptable level by for example providing more
user control or more information.

10. Future Work

As mentioned above, better results can potentially be achieved by using the se-
mantics of the source language, rendering the technique only partially language
independent. A possible way to do this is by looking at keywords like “class” for
example to better analyze the structure of an input. One could also extend the
context of patches with a path that leads to the feature, so that it can be fuzzily

14



Base Capacity

Inhibitor

Stochastic

Colored

Result

Figure 5: Petri Net models in AToMPM.

15



applied from there. This path would be language dependent and for example
describe the nesting of a piece of code (e.g.: class A: function B: 5th line).

Another open question is the usability of this technique for extractive SPLE. A
workflow has been described in section 5, but this has not yet been tried.

There are also disadvantages of encoding variability in patch files. They are
not easily readable by users and can’t be edited directly. Since these files are
source files (features are encoded in them), it should be possible to add them
to version control systems. A merge conflict between patch files is difficult to
handle properly. A solution for this may be found in merging them on a higher
level first by applying the respective patches.

16



[1] Sven Apel, Christian Kastner, and Christian Lengauer. Featurehouse:
Language-independent, automated software composition. In Proceedings
of the 31st International Conference on Software Engineering, pages 221–
231. IEEE Computer Society, 2009.

[2] Don Batory and Sean O’malley. The design and implementation of hierar-
chical software systems with reusable components. ACM Transactions on
Software Engineering and Methodology (TOSEM), 1(4):355–398, 1992.

[3] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-wise
refinement. IEEE Transactions on Software Engineering, 30(6):355–371,
2004.

[4] Andreas Birk, Gerald Heller, Isabel John, Klaus Schmid, Thomas von der
Maßen, and Klaus Muller. Product line engineering, the state of the prac-
tice. IEEE software, 20(6):52–60, 2003.

[5] P Clements and CW Krueger. Being proactive pays off/eliminating the
adoption barrier. point-counterpoint article in. IEEE Software, 2002.

[6] Neil Fraser. google-diff-match-patch-diff, match and patch libraries for
plain text, 2012.

[7] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in soft-
ware product lines. In Software Engineering, 2008. ICSE’08. ACM/IEEE
30th International Conference on, pages 311–320. IEEE, 2008.

[8] Sebastian Krieter, Marcus Pinnecke, Jacob Krüger, Joshua Sprey, Christo-
pher Sontag, Thomas Thüm, Thomas Leich, and Gunter Saake. Featureide:
Empowering third-party developers. In Proceedings of the 21st Interna-
tional Systems and Software Product Line Conference-Volume B, pages
42–45. ACM, 2017.

[9] Mira Mezini and Klaus Ostermann. Variability management with feature-
oriented programming and aspects. In ACM SIGSOFT Software Engineer-
ing Notes, volume 29, pages 127–136. ACM, 2004.

[10] Eugene W Myers. An o (nd) difference algorithm and its variations. Algo-
rithmica, 1(1):251–266, 1986.

[11] Klaus Ostermann. Dynamically composable collaborations with delegation
layers. In ECOOP, volume 2, pages 89–110. Springer, 2002.

[12] Tristan Pfofe, Thomas Thüm, Sandro Schulze, Wolfram Fenske, and Ina
Schaefer. Synchronizing software variants with variantsync. In Proceedings
of the 20th International Systems and Software Product Line Conference,
pages 329–332. ACM, 2016.

[13] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico
Tanzarella. Delta-oriented programming of software product lines. Software
Product Lines: Going Beyond, pages 77–91, 2010.

[14] Ina Schaefer and Ferruccio Damiani. Pure delta-oriented programming. In
Proceedings of the 2nd International Workshop on Feature-Oriented Soft-
ware Development, pages 49–56. ACM, 2010.

17



[15] Yannis Smaragdakis and Don Batory. Implementing layered designs with
mixin layers. ECOOP98Object-Oriented Programming, pages 550–570,
1998.

[16] Yannis Smaragdakis and Don Batory. Mixin layers: an object-oriented
implementation technique for refinements and collaboration-based designs.
ACM Transactions on Software Engineering and Methodology (TOSEM),
11(2):215–255, 2002.

[17] Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner Hansen,
Simon Van Mierlo, and Hüseyin Ergin. Atompm: A web-based modeling
environment. In Demos/Posters/StudentResearch@ MoDELS, pages 21–25,
2013.

[18] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter
Saake, and Thomas Leich. Featureide: An extensible framework for feature-
oriented software development. Science of Computer Programming, 79:70–
85, 2014.

[19] Wikipedia. Feature-oriented programming — wikipedia, the free encyclo-
pedia, 2017. [Online; accessed 4-December-2017].

18


	Introduction
	Related Work
	Motivation
	Working Example
	Workflow
	Proactive
	Reactive
	Extractive

	Implementation
	Program
	Editor
	Feature Model

	Tool
	Core Tool
	FeatureIDE Integration

	Application: AToMPM Models
	Conclusion
	Future Work

