
Modelling Read-Cache Solutions
for Blockchains

December 15th 2017

Jonas Vanden Branden

Overview
● Introduction

● The Problem

● A Solution

● Why Modelling?

● Conclusion

Introduction

Introduction
Blockchains:

- A solution for distributed systems to achieve consensus

- Introducing Delegated Byzantine Fault Tolerance

- A shared ledger to keep track of transactions

- Multiple stakeholders working with common data (e.g. chain of logistics)

- Cryptographical foundation (hashing, signatures, ...)

Blockchain Basics

Introducing Smart Contracts...

Smart Contract:
A  piece of code which is stored
in the blockchain network

Smart Contracts
- Deterministic State Machines

- Deterministic?

- Replication needed

- Which state?

- State of contract

- State of blockchain

ABI Bytecode
‘deploy’

‘compile’

Smart Contract Blockchains
Public:

- Ethereum (EVM, Solidity)

- NEO (NeoVM, C#, Java, ...)

Private / Permissioned:

- HyperLedger Fabric (Go)

- Tendermint (“Byzantine fault-tolerant replicated state machines in any programming language”)

→ Each node needs to execute each transaction

The Problem

Data Limitations
Blockchain as a (intelligent) database?

- No Querying Language

- Low throughput (Read & Write)

- High latency

Maybe not such a good idea....

A Solution

Current Workaround
Keep a local cache

- Not structural

- No guarantees about performance &

consistency

- Very Centralized

Improved solution:

Incorporate the cache in the read protocol

API
cache

cache

Different distributed caching solutions provide different properties:

● Consistency

● Latency

● Throughput

● ...(?)

How to compare them?

Explore Solutions

→ Construct a model / DSL

Why Modelling?

Why Modelling?

Save Time

● ...by reducing implementation cost

● ...by simulating time-intensive processes

Save Resources

● ...by reducing infrastructure cost

● ...by simulating resource-intensive processes

Improve Control

● ...by working with simulation models

● ...to model complex environments

More Abstraction

● ...to control the networking environment

● ...to omit irrelevant details

● Co-simulation for network influence?

● Petri Net model for consensus algorithm?

● How to model distributed caching solutions

○ ‘Top-down’: by analyzing possible algorithms

○ ‘Bottom-up’: by synthesizing possible properties

Any suggestions?

Conclusions

?Questions

