Modelling Read Cache Solutions for the
Blockchain

Jonas Vanden Branden
jonas.vandenbranden@student.uantwerpen.be

December 15, 2017

1 Introduction

In the current landscape of blockchain development, we are now confronted
with many boundaries of blockchain distributed applications (DApps). Among
these, there are the (R)DBMS-capabilities of a permissioned blockchain which
are desirable when developing data-intensive applications.

Tools
The tools currently used are:

e Tendermint: the private blockchain platform with a proof-of-stake pBFT
consensus algorithm

e Solidity: the smart contract language, compiled by the Ethereum Virtual
Machine (EVM)

Smart Contracts

Distributed Applications or 'DApps’ come in the form of smart contracts. In
essence, they are no more than deterministic state machines which manipulate
the state of the blockchain. Because of their deterministic nature, you can
run them multiple times from an equal start state and always expect the same
outcome, by definition. That is exactly what is done when executing function
calls or transactions on these smart contracts. All validator nodes on the net-
work execute this code and the Byzantine-fault-tolerant consensus-algorithm
will codrdinate the messages in such a way that all peers in the network are
working with consistent data. That is the strength of blockchain, multiple ac-
tors can work with common data without necessarily having to trust one party
for managing this data.

The problem arises when large amounts of data are needed in read, write,
update or delete operations. Smart contracts working with this data need to ex-
ecute on all nodes before completing and returning any information. Advanced
queries are not possible, querying lists is impossible, the storage capacity of a
smart contract is limited and so on. There are shortcomings in both performance


mailto:jonas.vandenbranden@student.uantwerpen.be

and expressibility. Where a blockchain is obviously preferred when handling raw
transactional types of data, its capabilities as a database are questionable.

Current Workaround

There is a frequently used workaround that deals with the read-performance
shortcomings. Smart contracts can emit events, and local (non-blockchain)
applications can subscribe to these events for specific contracts. Local databases,
functioning as caches, are often maintained to mirror the blockchain state and
enable fast and performant reads.

2 The Problem

Blockchain applications are suitable in the domain of logistics, where transac-
tions can take many forms. From container-handovers to commercial sales, and
everything in between on the supply chain. But requesting a lot of data from
the blockchain forms a bottleneck.

From personal experience I can say that the Solidity smart contracts (used by
Ethereum) are fairly limited in their data-aspect. They can handle simple logic,
but are literally restricted in data storage and handling.

The reasons for these shortcomings have two aspects:

e Data storage: The data stored in a blockchain is immutable, data in
the chain cannot be altered or changed, only by controlled transactions,
which are part of the protocol. This is one of the core strengths of the
architecture, but also a weakness to take into account. Changes to data
models are limited by this property as well. Smart contracts are not
change-friendly and upgrading existing entries to a new data-model is not
supported.

e Data handling: Reading of data of the blockchain is done as a smart
contract function-call | essentially a transaction. To ensure you ready
the true data, the transaction must pass the consensus mechanism, which
takes time. Large reads, like lists of all objects or more advanced queries,
suffer from this limited throughput and large latencies.

The handling of data can be approached by working with a performant cache,
but the storage is something more complex.

3 A Solution

As previously mentioned, a possible solution is to add an extra caching ‘layer’
to the platform where data can be accessed easier, at the cost of some possible
inconsistencies. This is interesting when clients are requesting large lists of en-
tries in the system.

Current solutions handle this by creating a small database, which is kept
up-to-date by subscribing to certain events from the blockchain. This is not
really a structural solution, so it might be beneficial to incorporate this into the



platform. With calculated guarantees about the performance and consistency
of the data, instead of a handmade solution.

This will mainly handle the read-operations of the database, as writes, up-
dates and deletions of the data is something that should pass the consensus and
happen inside the blockchain. Moving the data off-chain and just keepin the
(business-)logic on the blockchain is also a possible course of action, but this is
out of the scope of this research.

4 Why Modelling?

Different (distributed) caching implementations will have different characteris-
tics regarding latency, consistency, throughput,... Choosing between different
approaches can be supported by developing a domain specific language and
modelling simulations.

Saving Time & Resources

Modelling the implementations will have the advantage that time and resources
can be saved by working with a simulation model.

Abstraction & Control

Another important reason is that the network layer, upon which the system
will be running, is a complex environment which should be taken into account.
Modelling this system is advantageous in comparison with a real-life setup of
the system; a developer/analyst has more control over the environment, it is
more cost-efficient as well.

Reasoning can be done on higher level, without having to spend too much time
on implementation.

5 Conclusion

There are some challenges which should be tackled in the next phase of this
project:

Without knowing how the caching algorithms will be implemented, we should
find a way to model their characteristics in a way that they become comparable.
This could be ’top-down’, by analysing a few algorithms and extracting their
characteristics, or ’bottom-up’, by abstracting the properties without necessar-
ily having concrete algorithms.

The network influence should be modelled or borrowed from a existing
network-model. Co-simulation could be an interesting approach.

How can the blockchain consensus protocol be modelled? By constructing
Petri Nets, or are there better alternative solutions?

Suggestions to tackle these challenges are very welcome.



	Introduction
	The Problem
	A Solution
	Why Modelling?
	Conclusion

