
A Configuration Language for Convolutional Neural

Networks

Jony Van Puymbroeck

jony.vanpuymbroeck@student.uantwerpen.be

Abstract

Creating a Convolutional Neural Network can be very complex, especially
for people who have no programming experience. A tool to generate the
project code makes it more likely for non-experts to give Deep Learning a
try. Having a Configuration Language enables the users to easily create their
model and tweak the parameters in a plug-and-play environment using puzzle
pieces. These different parameters determine the viability of your project, so
thoughtfully setting these is advised. A user will often have a dataset that
is too small to generate usefull models. Therefore, Data Augmentation code
can be provided by the tool if parameters concerning the data are given. This
paper discusses a possible solution.

Keywords: Configuration Languages, Convolutional Neural Networks,
CNN, Machine Learning, KERAS, Python, Tools, Data Augmentation,
AToMPM, metaDepth, Persimmon, Puzzle Pieces

1. Introduction

Working on my Masters’ Thesis - Computer-aided diagnosis: Determin-
ing the immune phenotype using Deep Learning - I noticed the complexity of
learning how to work with CNN’s is high. It involves learning to work with
the KERAS[9] library which requires decent knowledge of the Python[8]
programming language. Furthermore, one is required to learn all about the
different layers of a CNN. Setting up the entire project directory with the
working code, a GUI, ... takes quite some time, even for someone with a
decent amount of programming knowledge.

Since I’m doing my research for a company with no expertise on Machine

Preprint submitted to A Configuration Language for Convolutional Neural NetworksJanuary 28, 2018

Learning (and in this case more specifically Deep Learning), I will need to
provide them with a workflow document giving them a way of (re-)generating
the project while all they would need to do is set a minimal amount of pa-
rameters. This would optimize their experience with creating deep learning
projects. Therefore, in this paper I aim to justify the need of a config-
uration language which allows code generation of the model and GUI
and minor analysis.

A Configuration Language is an MDE-based solution where the user de-
fines a workflow that can be parametrized at run-time and executed. This
Workflow is a DSL for defining activities that can be performed in MDE
tools. It consists of an orchestrated and repeatable pattern of business activ-
ity enabled by the systematic organization of resources into processes that
provide services, or process information. It can be depicted as a sequence
of operations or one or more simple or complex mechanisms. From a more
abstract or higher-level perspective, workflow may be considered a view or
representation of real work. The flow being described may refer to a service
or product that is being transferred from one step to another[6].

Building a Convolutional Neural Network requires programming skills
and decent insights in the relevant Deep Learning algorithms. Creation of
the project code using a Configuration Language (CL) could make the
process easier for the user. In this paper, we will look at a possible solution
to create a model, capable of generating the project code to train a CNN as
well as discussing why this is relevant.

Very important to note is that by using a Configuration Language, the user
would no longer need to have any programming skills. Code is generated as
is and can be executed using the command line. This provides users a way
of creating CNN’s without the need of knowledge of KERAS or Python.

Using a CL allows us to perform analysis on the created model. Our model
includes the possibility of generating Data Augmentation code, Model gener-
ation code, Data Augmentation is very dependent on the data we have:
Are all images of the same size, how many pixels should the width/height-
shift at least be, If these parameters are not set correctly, data augmenta-
tion might generate erroneous data (duplicate images, stretched images, ...).

2

Section 2 clearly explains how the CL is formed and the things the tool
can’t guarantee, Section 3 gives more information about CNN’s, Section 4
gives a brief introduction into how the (training) data should look, Section
5 talks about what Transfer Learning is, and how we will use it, Section 6
explains the different puzzle pieces of the tool and what they are for, Sec-
tion 7 handles the importance and possibilities for user experience, Section
8 is a guide on how a user can use the generated code, Section 9 covers the
used Tools, Section 10 covers future work, Section 11 gives an introduction
to related work and Section 12 concludes the research project.

2. Configuration Language

The CL identifies the commonalities in the development of a CNN and
summarises those in the form of puzzle pieces. These puzzle pieces can be
used to create the model. Each type of puzzle piece has its own set of settable
parameters. After the creation of the model, the user can export the model
to metaDepth[4] to generate the project code. The parameters you should
set require knowledge of Convolutional Neural Network layers though, but
these could be briefly explained in a user manual.

This Configuration Language does not ensure viable model creation
after generating the project. That still depends on the parameters used, the
data you are using and any preprocessing you might do or have done with
the data. The model is capable of performing certain analysis on the set
parameters which guides the user in choosing them. Training a model still
requires decent insight in how Deep Learning works. The CL can just be
used as a tool for people with no expertise in programming.

3. Convolutional neural networks

A Convolutional Neural Network (CNN) is a biologically-inspired variant
of multilayer perceptron1 [1]. It is a class of deep, feed-forward artifi-
cial neural networks that has been successfully applied to analyzing visual
imagery. It allows us to generate a neural network which has been proven
effective in areas such as image recognition and classification. The CNN
assumes the inputs to be images and has an architecture designed to take

1Multilayer perceptron: A network of simple neurons, called perceptrons. [3]

3

advantage of the structure of images. Such a CNN is a sequence of layers,
such as: The convolutional layer, the ReLU layer, the Pooling layer and the
FC layer [2]. An example of these layers, applied on an example image, can
be found in figure 1.

A very useful example of how a Convolutional Neural Network is applied
can be found in the tutorial for a Kaggle competition which aims to classify
pictures of cats and dogs.[12]

Figure 1: The layers of a CNN applied on a picture.[11]

4. Data

Any data the model would be trained on has to be an image. These
images need to be labeled by their correct class (supervised learning[5]) and
put into a folder hierarchy for training purposes. The model can then be
trained using this folder structure.

5. Transfer Learning

Transfer learning or inductive transfer is a research problem in machine
learning that focuses on storing knowledge gained while solving one problem
and applying it to a different but related problem. For example, knowledge
gained while learning to recognize cars could apply when trying to recognize
trucks[13]. In practice, very few people train an entire Convolutional
Network from scratch, because it is relatively rare to have a dataset of
sufficient size. Instead, it is common to pretrain a ConvNet on a very large
dataset (e.g. ImageNet, which contains 1.2 million images with 1000 cate-
gories), and then use the ConvNet either as an initialization or a fixed feature

4

extractor for the task of interest [14].

Using transfer learning, non-experts are enabled to generate very use-
ful results without the need of creating a Convolutional Neural
Network from scratch. Instead, they are allowed to use a pretrained
network. We will use InceptionV3[16] which is a pretrained model on the
ImageNet[17] database. To illustrate the complexity of such a Convolutional
Neural Network, figure 2 depicts the layers of the inception model.

Figure 2: The layers of the CNN of the Inception model.[16]

6. Puzzle Pieces

The model consists of different blocks, which can be set by the user in
order to generate the desired project code. These blocks can be connected in
a very specific order. Horizontal connections are used for big parts of the
model, while vertical addition of puzzle pieces means they are additional
processes to be added to that part of the model. An example model created
by our tool is shown in figure 4. We can clearly see the different model
parts which are shown to the users as different colors. In this section we will
elaborate on the meaning of the different pieces.

The blocks can be found in figure 3. The different abbreviations of the
blocks mean:

5

• DA: Data Augmentation Block

• ROT: Image Rotation Block

• FR: File Rename block

• VF: Vertical Flip Block

• EDS: Expand Data Set Block

• GUI: Create GUI Code Block

• MG: Model Generation Block

• CL: Classifier Block

• MGI: Model Generation Interruption Block

• SP: Set Percentages Block

The pieces of the puzzle are depicted in different colors. These colors are
to indicate the horizontals of the model (bigger parts of the model):

• Red: Data Augmentation Functionality

• Black: The Gui

• Green: Model Generation Functionality

• Blue: Setting Percentages of data distribution.

Figure 3: The different puzzle pieces to create the model.

6

Figure 4: An example Puzzle model.

6.1. Data Augmentation (DA)

The data augmentation block (puzzle piece) is depicted by DA in a red
color. It can be used to connect different data augmentation functionality to
the model. The pieces to connect to this puzzlepiece are: FR, EDS, ROT
and VF.

6.1.1. Required Folder Hierarchy (FR)

The data 4 will need to have been put in a specific folder hierarchy. For
the kaggle example[12], the hierarchy would look like:

/ data /
> dogs /
−− dog . 1 . png
−− dog . 2 . png
. . .

> ca t s /
−− cat . 1 . png
−− cat . 2 . png
. . .

Generating data is not automatable and requires input from the user
as this is often very specific. The model can generate renaming code for the

7

image files though. This can be generated by adding the FR block to the DA
block. This can divert hours of work into a simple script. This puzzle piece
takes one parameter: The folder name which contains the files to rename.

6.1.2. Expanding the data set size (EDS, VF, ROT)

The Data Augmentation block enables augmentations like:

• EDS: Generating smaller images from our original images. Take for
example a 2000x2000 image. You would then generate 900 images out
of a single image by taking an image of size 1700x1700 out of this
2000x2000 image. This by shifting 10 pixels in width/height in each
iteration. This results in images with dimensions [0,0,1700,1700], [10,
0, 1710, 1700], ..., [0, 10, 1700, 1710], Further augmentations
would only be performed on these 1700x1700 images in order to
avoid generating duplicate images.

• ROT: Rotate the image 90 degrees, up to three times (resulting images
would be 0, 90, 180 and 270 degrees rotated to the right)

• VF: Flip the resulting images vertically.

The EDS puzzle piece takes two parameters:

1. Shiftamount: The amount of times you want to shift in width and
height over the original image. Pixel shift amount is calculated accord-
ingly. For example: 30 would generate 30x30 images, shifted over 10
pixels each time.

2. ImgSize: The resolution of the image. All images should be squares.

For the EDS, we must note that the amount of pixels to shift with (in the
example: 10 pixels) has to be bigger than a certain value. To determine this
value, we must notice that the pretrained model of which we will transfer-
learn5, has a certain input image resolution, which means the input data will
be scaled up/down to that resolution. For InceptionV3[16], this resolution is
299 x 299. In our example of 1700x1700 images, this would mean we need
to shift at least

299

1700
< 6pixels

since every 6 pixels will be used to become 1 pixel in the case we downscale.
To make sure this is enforced, analysis is performed on the given parameters

8

to ensure viable data augmentation.

The ROT puzzle piece takes one parameter: The amount of rotations
performed. Allowed inputs are the numbers 2 and 4. If the number 2 is
inserted, a 0 and 180 degree rotation is performed. If the number 4 is inserted,
a 0, 90, 180 and 270 degree rotation is performed.

VF takes no parameters. If this piece is connected, all images will be
flipped vertically.

6.1.3. Dividing into Training, Validation and Testing set (SP)

When the actual augmentation is finished, we would like the dataset to
be split up into a Training, Validation and a Testing set. Normal percent-
ages would be 60% of the data would go to the Training set, 20% to the
Validation set and 20% to the Testing set. The SP block in the blue color
provides settable parameters for these percentages. The resulting folder for
the example of the dogs and cats structure would be:

/augmented data/
> t r a i n d i r /
−> dogs /
−> ca t s /

> v a l d i r /
−> dogs /
−> ca t s /

> t e s t d i r /
−> dogs /
−> ca t s /

6.2. Model generation (MG, CL, MGI)

The model generation puzzle piece MG , colored green, takes a variety
of parameters:

• Amount of epochs: The amount of times to iterate over the entire
dataset. An additional epoch usually increases the accuracy of the
models’ predictions.

9

• The Transfer Learning optimizer[10]

• The Transfer Learning optimizer learning rate.

• The Fine Tuning optimizer[10]

• The Fine Tuning optimizer learning rate.

• Directory of data.

• Directory of augmented data dump folder.

The generated code can then be executed to generate the model. Possi-
ble inputs for the optimizers are, which are further explained in the Keras
Optimizers webpage[10]:

• SGD

• Adam

• RMSprop

• Adagrad

• Adadelta

• Adamax

• Nadam

The CL block is meant to add classes to the model. We need to provide
these classes in order to indicate which classes the model needs to learn.
These puzzle pieces also have the option to set the weight of the class for
class weighting purposes in case the user has an unbalanced data set. A class
weight is determined as the amount of images one class has compared to
the other classes. You take one class as a guideline to determine your other
weights, consider this class to be class A. And say there is a class B which
has 2x less images, and a class C which has 3x less images (than class A).
Class weight distribution would be:

1. Class A Weight: 1.0

2. Class B Weight: 2.0

3. Class C Weight: 3.0

10

To make sure these weights are filled in correct, certain analysis is performed
on these parameters.

The MGI puzzle piece is meant to stop training the model if the loss
function[19] isn’t getting any lower after a while. This puzzle piece then has
the parameter ”Patience” to be set. This takes the amount of epochs to wait
for a lower loss amount. If the loss doesn’t get any lower after max. 3 epochs,
the model generation will be stopped and the model will be delivered as is.

6.3. GUI

The GUI puzzle piece , which is entirely black, will generate code to
run the GUI for prediction purposes. This uses the PyQT Library. The gui
can be used on the testing set to manually test the accuracy of the model.
You can use the GUI to test a single images’ accuracy, or execute the
prediction algorithm on an entire directory full of images. An image of
this GUI can be found in figure 5.

Figure 5: The gui for prediction model execution.

7. User Experience

This tool could be tested by multiple types of users. Their feedback
could then be used to adjust the tool. Having the users test the software is
something that is yet to be performed.

11

7.1. Pathologists

Pathologists could use this tool to generate Computer Aiding Diagnosis
software. Automated analysis and classification of images can aid patholo-
gists in determining specific types of tissue. This could in turn help recog-
nising diseases like cancer and needed therapy’s could be inferred from this
data.

7.2. Others

The possible applications are endless. One could use trained models to
determine amounts of people in a picture, count cars on a video feed,

8. How to use the generated code

8.1. autoRenamer.py

This code can be used as is. No additional parameters are required. The
user just has to run:

> python autoRenamer . py

8.2. dataAugmentation.py

This code can be used as is. No additional parameters are required. The
user just has to run:

> python dataAugmentation . py

8.3. finetune.py

This code needs some extra parameters.

• : –train dir: The directory of the training data

• : –val dir: The directory of the validation data

• : –plot (optionally): Add this tag if you want data about the model
generation to be plotted.

Don’t use square brackets to give the directories as shown below, just use
the path to the directory.

> python f i n e t u n e . py −−t r a i n d i r [t r a i n d i r] −−v a l d i r [va l d i r]

12

8.4. gui.py

This code can be used as is. No additional parameters are required. The
user just has to run:

> python gui . py

The user can choose between single file prediction, or predicting all images
from entire directory. Plots of the prediction are added to the ”plots” direc-
tory.

9. Tools

9.1. AToMPM

AToMPM[18] is a research framework from which you can generate
domain-specific modeling tools. It is an open-source framework for designing
DSML environements, performing model transformations, and manipulating
and managing models. In this case, it is used to generate the Configuration
Language entirely.

9.2. metaDepth

metaDepth[4] is a framework for deep meta-modelling. AToMPM al-
lows for exporting generated models to metaDepth. metaDepth in turn al-
lows for this exported model to be used as input for template coding, which
generates our needed python code in the ProjectCode folder.

9.3. Extra

Furthermore, we use:

• Python: The programming language[8] to generate the model.

• KERAS: Keras is a high-level neural networks API, written in Python
and capable of running on top of TensorFlow, CNTK, or Theano.

10. Future Work

This tool serves as a base for a more complex and useful tool. One could
build on the metamodel and add more functionality and puzzlepieces, like
for example functionality for a Recurrent Neural Network. This could then
be coupled to code generation by metaDepth.

13

11. Related Work

11.1. Persimmon

Persimmon is a visual programming interface that leverages scikit-learn
to provide a drag and drop interface for developing Machine Learning and
Data Mining pipelines. It is based on the dataflow programming principles,
giving the user a functional visual language with a type safety system that
checks connections at write time, non-strict evaluation, task parallelization,
and execution visualization. It had been evaluated by participants on a three-
task form, overall receiving good reviews, being praised by the use of colors
to indicate types, consistent design, easy to navigate and shallow learning
curve[7].

The motivation for Persimmon is the lack of programming skills of users of
the Machine Learning algorithms. These users are mostly experts on Maths,
Physics, Electric Engineering, Statistics, They aim to provide the user
with feasibility study functionality, ease to use in the form of a drag and drop
interface and a useful learning tool (for programming and Machine Learning
algorithms).

11.2. Comparison

Our tool aims to supply the user with code to generate a Convolutional
Neural Network, where Persimmon provides all scikit[20] functionality, which
does not include CNN’s. This tool is therefore valuable for all users who aim
to use image classification.

12. Conclusion

We can conclude that this tool can generate CNN models for a user
without the need of programming skills, capable of doing analysis where
possible. The user experience is of fundamental importance. Optimizing this
will make tools like this more accessible for the public. The models can be
tweaked in many ways using the different parameters of the model. Users will
still be expected to learn about the way Deep Learning and Convolutional
Neural Network optimizers work in order to produce a viable model.

14

References

[1] Deeplearning.net Convolutional Neural Networks (LeNet). http://

deeplearning.net/tutorial/lenet.html deeplearning.net, LeNet, ac-
cessed: 2017-09-19.

[2] cs231n CS231n Convolutional Neural Networks for Visual Recognition.
http://cs231n.github.io/convolutional-networks/#conv cs231n,
accessed: 2017-09-19.

[3] Antti Honkela Multilayer perceptrons. https://www.hiit.fi/u/

ahonkela/dippa/node41.html Antti Honkela, 2001-05-30, accessed:
2017-09-19.

[4] metaDepth a framework for multi-level meta-modelling http://

metadepth.org/

[5] Jason Brownlee Supervised and Unsupervised Machine Learn-
ing Algorithms https://machinelearningmastery.com/

supervised-and-unsupervised-machine-learning-algorithms/

Jason Brownlee, 2016-03-16, accessed: 2017-12-11.

[6] Gamboa M., Syriani E. Using Workflows to Automate Activ-
ities in MDE Tools http://www.springer.com/cda/content/

document/cda_downloaddocument/9783319663012-c2.pdf?SGWID=

0-0-45-1616886-p181095235 Universite de Montreal, Montreal,
Canada, accessed: 2017-12-11.

[7] Garcia A. Persimmon, A Visual Dataflow Language for Machine LEar-
ling http://eprints.ucm.es/44618/1/Persimmon.pdf Complutense
University of Madrid, Alvaro Bermejo Garcia, 2017-06-16, accessed: 2017-
12-11.

[8] Python Software Foundation (2001) https://www.python.org/ , ac-
cessed: 2017-12-13.

[9] Keras (2015) https://keras.io/ , accessed: 2017-12-13.

[10] Keras (2015) Usage of optimizers https://keras.io/optimizers/ ,
accessed: 2017-12-13.

15

http://deeplearning.net/tutorial/lenet.html
http://deeplearning.net/tutorial/lenet.html
http://cs231n.github.io/convolutional-networks/#conv
https://www.hiit.fi/u/ahonkela/dippa/node41.html
https://www.hiit.fi/u/ahonkela/dippa/node41.html
http://metadepth.org/
http://metadepth.org/
https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/
https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/
http://www.springer.com/cda/content/document/cda_downloaddocument/9783319663012-c2.pdf?SGWID=0-0-45-1616886-p181095235
http://www.springer.com/cda/content/document/cda_downloaddocument/9783319663012-c2.pdf?SGWID=0-0-45-1616886-p181095235
http://www.springer.com/cda/content/document/cda_downloaddocument/9783319663012-c2.pdf?SGWID=0-0-45-1616886-p181095235
http://eprints.ucm.es/44618/1/Persimmon.pdf
https://www.python.org/
https://keras.io/
https://keras.io/optimizers/

[11] ujjwalkarn An Intuitive Explanation of Convolutional
Neural Networks https://ujjwalkarn.me/2016/08/11/

intuitive-explanation-convnets/ The Data Science Blog,
ujjwalkarn, 2016-08-11, accessed: 2017-12-13.

[12] sub-subroutine Cats and dogs and convolutional neural networks
http://www.subsubroutine.com/sub-subroutine/2016/9/30/

cats-and-dogs-and-convolutional-neural-networks Subsub-
routine, 2016-09-30, accessed: 2017-12-13.

[13] West J., Ventura D., Warnick S. (2007) Spring Research
Presentation: A Theoretical Foundation for Inductive Trans-
fer https://web.archive.org/web/20070801120743/http:

//cpms.byu.edu/springresearch/abstract-entry?id=861 Brigham
Young University, College of Physical and Mathematical Sciences.
Archived from the original on 2007-08-01. Retrieved 2007-08-05.
Accessed: 2017-12-13.

[14] Transfer Learning http://cs231n.github.io/transfer-learning/

cs231n, accessed: 2017-12-13.

[15] Nealwu TensorFlow-Slim NASNet-A https://github.com/

tensorflow/models/tree/master/research/slim/nets/nasnet

github, accessed: 2017-12-13.

[16] Niyazpk Inception in TensorFlow https://github.com/tensorflow/

models/tree/master/research/inception github, accessed: 2017-12-
13.

[17] image-net http://www.image-net.org/ Stanford Vision Lab, Stanford
University, Princeton University, 2016, accessed: 2017-12-13.

[18] Syriani E., Vangheluwe H., Mannadiar R., Hansen C., Van Mierlo S., Er-
gin H., Corley J. AToMPM Documentation https://msdl.uantwerpen.

be/documentation/AToMPM/ Accessed: 2017-12-13.

[19] Neural Networks, Loss Function http://cs231n.github.io/

neural-networks-3/#loss cs231n, accessed: 2018-01-28.

[20] Scikit Learn http://scikit-learn.org/ Scikit Learn, accessed: 2018-
01-28

16

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
http://www.subsubroutine.com/sub-subroutine/2016/9/30/cats-and-dogs-and-convolutional-neural-networks
http://www.subsubroutine.com/sub-subroutine/2016/9/30/cats-and-dogs-and-convolutional-neural-networks
https://web.archive.org/web/20070801120743/http://cpms.byu.edu/springresearch/abstract-entry?id=861
https://web.archive.org/web/20070801120743/http://cpms.byu.edu/springresearch/abstract-entry?id=861
http://cs231n.github.io/transfer-learning/
https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet
https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet
https://github.com/tensorflow/models/tree/master/research/inception
https://github.com/tensorflow/models/tree/master/research/inception
http://www.image-net.org/
https://msdl.uantwerpen.be/documentation/AToMPM/
https://msdl.uantwerpen.be/documentation/AToMPM/
http://cs231n.github.io/neural-networks-3/#loss
http://cs231n.github.io/neural-networks-3/#loss
http://scikit-learn.org/

	Introduction
	Configuration Language
	Convolutional neural networks
	Data
	Transfer Learning
	Puzzle Pieces
	Data Augmentation (DA)
	Required Folder Hierarchy (FR)
	Expanding the data set size (EDS, VF, ROT)
	Dividing into Training, Validation and Testing set (SP)

	Model generation (MG, CL, MGI)
	GUI

	User Experience
	Pathologists
	Others

	How to use the generated code
	autoRenamer.py
	dataAugmentation.py
	finetune.py
	gui.py

	Tools
	AToMPM
	metaDepth
	Extra

	Future Work
	Related Work
	Persimmon
	Comparison

	Conclusion

