
Modeling with Sirius; a language for home automation
systems

Arkadiusz Rys

University of Antwerp, Belgium

Abstract

Sirius1 is an Eclipse project which is built on top of the Eclipse modeling

technologies to aid in designing a graphical modeling workbench. A user can

create meta-models and models which are based on these meta-models. Once a

model is created we can validate whether constraints are met or even generate

code. An added benefit of Sirius is the ability for users to work directly within

the graphical representation of the generated models. [1] The goal of this paper

is to create an overview of the functionalities of Sirius and show how it can be

applied with the use of other technologies to design home automation systems.

Keywords: Model Driven Engineering, Sirius, Eclipse modeling Framework,

IoT, Home automation

1. Introduction

Sirius is a model driven engineering tool developed by Obeo and Thales with

the help of the community. It is a graphical tool where the user can edit the

properties of diagrams and other visualizations within the visualization itself.

As model driven engineering can be used to develop domain specific applications5

where the representation can be used by a domain expert, it lends itself greatly

for the case of designing complex home automation systems. We will discuss

how, where and why such application is viable.

Email address: Arkadiusz.Rys@student.uantwerpen.be (Arkadiusz Rys)
1Sirius can be found at http://www.eclipse.org/sirius/

Preprint submitted to University of Antwerp December 15, 2017

 http://www.eclipse.org/sirius/


The rest of the publication will be split in the following sections. Section 2

will elaborate more on the details of the architecture on top of which Sirius is10

based. The many features and capabilities of Sirius will be presented in section

3 with section 6 explaining how we will apply Sirius to our problem. The choice

of candidate for this problem is described in section 4. A few things were done

in order to help the project start off in the right direction, these can be found

in section 5. Section 7 finally concludes.15

2. Architecture

Figure 1: Sirius architecture model overview.

Eclipse. Sirius is built on top of the eclipse platform as seen in Figure 1 2.

Eclipse is rather extendable and Sirius acts like a plugin in this system. This

allows us to extend the functionality of Sirius by installing more Eclipse plugins

which could aid in model transformations or code generation.20

2https://www.eclipse.org/sirius/doc/developer/Architecture_Overview.html

2

https://www.eclipse.org/sirius/doc/developer/Architecture_Overview.html


Eclipse modeling framework. Sirius is not built directly on top of Eclipse, EMF

or the Eclipse modeling framework connects the two. EMF is used to design

the ecore meta-models. Editors can be generated to edit stored data textually

and Sirius extends these capabilities by allowing to edit the data within the

diagrams themselves. The EMF layer is where model transformations happen.25

One of such plugins is Viatra3.

Composition. At the highest level you can see how the Sirius tooling is split

from the runtime which interprets the models. This has the advantage of a

smaller package for the end users, which will not have any of the tools needed

to edit the underlying structure. The Sirius runtime is where the end-user can30

interact with the models.

This is not the only way Sirius separates its architecture. The core is also

split from any dialect specific extensions like diagrams or trees. This way, more

dialects can be developed by third parties just by accessing Sirius’ API.

Another optimization happens when models are updated. Sirius uses a35

refresh algorithm which is incremental and therefore only the changes are prop-

agated to the model, this results in them being available to be viewed immedi-

ately.

Graphical modeling Framework. Sirius uses the GMF or Graphical modeling

Framework notation and runtime. The internal model is computed from the40

designed domain- and specification model. Then the Sirius internal diagram

model is used as the semantic model for the notation. GMF tooling was used to

initialize the GMF code to manipulate the internal Sirius diagram model but

now the generated code and GMF tooling are not used anymore.[2, 3]

3. Capabilities45

Sirius supports five representations out of the box:

3https://www.eclipse.org/viatra/

3

https://www.eclipse.org/viatra/


• Diagrams

• Sequence Diagrams

• Tables

• Trees50

• Properties view

Sirius allows us to have a combination of these representations in a single

project, you can even have multiple representations of the same type or create

a completely new representation.

3.1. Diagrams55

Diagrams are very versatile. In Sirius they have quite a lot of options so we

will cover a few.

Figure 2: Example of a diagram in Sirius.4

4https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html

4

https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html


Layers. Diagrams can have one or more layers which can be independently

shown or hidden. In these layers we can define graphical representation which

will be mapped onto elements.60

Styling. Every aspect of the diagram can be styled. Styles can be conditional.

For example: weighted edges with a weight higher than 5 can be turned red.

Tools. We can also define tools which will be available to the user. These can

be used on the representation or be defined to happen on a specific event like

the reconnecting of an edge.65

Filters. Defining filters, which will hide or show elements matching specific con-

ditions is also possible. This gives the designer more choice than just disabling

whole layers of elements.

Validation. The model can be validated when required. Rules have to be set

before the validation can take place.70

More options are available within the framework as it is meant to be able to

encompass any design compatible with the EMF core.

5



3.2. Tables

Figure 3: Example of an edition table in Sirius.5

Sirius allows to define tables. These give us the option of editing the data

within a table which at times will be faster than fiddling with a diagram. We75

have two types of tables within Sirius.

(1) The Edition Tables behave just like any old regular table would, the column

header mappings will be some (computed) attribute.

(2) The Cross Tables are a special kind of tables which are optimized to repre-

sent relationships between elements. Both the columns and row headers will80

represents elements with the corresponding cell checked when a relationship

between them exists.

5https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html

6

https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html


3.3. Trees

Figure 4: Example of a tree view in Sirius.6

Tree views are the hierarchical views you can see all throughout Sirius within

its own editing windows. The items within these are created lazily however they85

are not deleted implicitly.

3.4. Overview

Users familiar with Eclipse will recognize the layout of the Sirius workbench.

As Sirius allows many views or representations of the same data we can edit the

data in any of them and the changes will propagate. This allows the designer90

to open both views at the same time and monitor whether the changes in one

view have the desired effect on the others.

6https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html

7

https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html


Figure 5: The interface the end-user would see for diagram editing.7

Whenever the end-user manipulates the models, he does so in a simpler view.

This view is the one the end user would get for a diagram. The canvas in the

center (orange) is where they would create and edit their model. The palette95

(red) shows what they have at their disposal (the tools and elements we defined)

and at the top in the menu (green) we have some general options. The behavior

when they add, delete or perform any other operation is also defined by the

person who designed the model.

4. Candidates100

In order to create a model we need to research some home automation plat-

forms first. The ones covered in this publication are:

• OpenHAB[4]

• If this then that[5]

• Home Control Assistant[6]105

The first draft included Allen patterns[7], this is why we’ll also mention their

support by any specific platform. This is rather easy as only OpenHAB al-

lows us to define such patterns. Although not in a very user friendly manner.

Furthermore it is also the only open source alternative which supports a concise

textual definition of rules.110

7https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html

8

https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html


5. Preparation

In order to get a general idea on how to create a good model and the work-

ings of event processing, two resources were consulted. The first is a publication

about complex event processing[8]. The second is a work package showcas-

ing the design decisions and tools used for problems solved by complex event115

processing[9].

6. Case study

For the case study a project consisting of multiple parts will be designed and

realized. A formalism dedicated to modeling the textual rule and action input

of OpenHAB will be created. This will include the creation of user friendly120

tools which will provide any required operation on the model. These tools and

models will be designed with D. L. Moody his work on notations in mind[10].

Then a model transformation will be defined which will be a able to generate

code for both the application condition and action. This will be done using

Viatra. The application condition should also be importable from the Xtend125

textual definition which OpenHAB utilizes and perhaps even allow analysis.

The reason for defining a visual rule language is so the user can have a better

grasp and overview of what is being done. This will also help users which are

not familiar with the Xtend language.

7. Conclusion130

In conclusion we can see how model driven engineering tools can be used to

graphically model complex systems. We have explored some aspects of Sirius

and are now more aware of the choices available to us when in need of a graphical

modeling tool. We also have explored how Sirius can be used in the specific

case of modeling home automation systems for use in OpenHAB.135

9



References

[1] Sirius.

URL http://www.eclipse.org/sirius/

[2] M. Porhel, Sirius Forum.

URL https://www.eclipse.org/forums/index.php/t/1070145/140

[3] M. Porhel, Sirius Documentation.

URL https://www.eclipse.org/sirius/doc/developer/

Architecture_Overview.html

[4] OpenHAB.

URL https://www.openhab.org/145

[5] IFTTT.

URL https://ifttt.com/

[6] Home Control Assistant.

URL http://www.hcatech.com/

[7] T. A. Alspaugh, Allen’s Interval Algebra.150

URL https://www.ics.uci.edu/%7Ealspaugh/cls/shr/allen.html

[8] I. Dávid, I. Ráth, D. Varró, Foundations for streaming model transforma-

tions by complex event processingdoi:10.1007/s10270-016-0533-1.

[9] SocEDA Work packages and deliverables, work package 4.

URL https://research.linagora.com/display/soceda/Work+155

packages+and+deliverables#wp4

[10] D. L. Moody, The physics of notations: Toward a scientific basis for con-

structing visual notations in software engineering, IEEE Transactions on

Software Engineering 35 (6) (2009) 756–779.

10

http://www.eclipse.org/sirius/
http://www.eclipse.org/sirius/
https://www.eclipse.org/forums/index.php/t/1070145/
https://www.eclipse.org/forums/index.php/t/1070145/
https://www.eclipse.org/sirius/doc/developer/Architecture_Overview.html
https://www.eclipse.org/sirius/doc/developer/Architecture_Overview.html
https://www.eclipse.org/sirius/doc/developer/Architecture_Overview.html
https://www.eclipse.org/sirius/doc/developer/Architecture_Overview.html
https://www.openhab.org/
https://www.openhab.org/
https://ifttt.com/
https://ifttt.com/
http://www.hcatech.com/
http://www.hcatech.com/
https://www.ics.uci.edu/%7Ealspaugh/cls/shr/allen.html
https://www.ics.uci.edu/%7Ealspaugh/cls/shr/allen.html
http://dx.doi.org/10.1007/s10270-016-0533-1
https://research.linagora.com/display/soceda/Work+packages+and+deliverables#wp4
https://research.linagora.com/display/soceda/Work+packages+and+deliverables#wp4
https://research.linagora.com/display/soceda/Work+packages+and+deliverables#wp4
https://research.linagora.com/display/soceda/Work+packages+and+deliverables#wp4

	Introduction
	Architecture
	Capabilities
	Diagrams
	Tables
	Trees
	Overview

	Candidates
	Preparation
	Case study
	Conclusion

