An explicitly modeled algorithm
for mining frequent item sets in MDE settings

T. Leys
tim.leys@student. uantwerpen. be

University of Antwerp, Belgium

Abstract

In this paper, we will take a closer look into how we can use data mining
techniques in combination with DSL’s. The frequent dataset mining algo-
rithm will be used.

We will discuss how the algorithm can be explicitly modeled. By explic-
itly modeling the algorithm, we elevate the level of reasoning to the same
level as the DSL. This way domain experts can work with and custom tailor
the algorithm in an environment they are familiar with. The approach is
presented through a scenario exemplifying a typical Industry4.0 context, in
which data mining algorithms are frequently used.

Keywords: MDE, Frequent Itemset Mining, Explicit Modeling, Supply
Chain Management

1. Introduction

Recommender systems has become a ubiquitous concept in the world of com-
puter science. By analyzing past behavior, a recommender system tries to
recommend certain items to a user. A typical applications of recommender
systems can be found in e-commerce sites like amazon.com. A user will be
given a set of items that he is likely to be interested in. Dyck et al. [1]
have mentioned the fact that modeling environments might benefit from
recommender systems, for example for syntax completion. However current
research in this field is limited.

A widely used technique in recommender systems is frequent dataset min-
ing [3]. Given a database of transaction, a frequent dataset mining algorithm

attempts to identify which items appear frequently together in a transaction.
A transaction set is a set of items, in the context of e-commerce a transac-
tion can be interpreted as a set of items a user buys together. In a modeling
environment, we can interpret such a transaction set as a set of all elements
used in a model. Many algorithms have been developed to deal with this
problem, but they all operate on textual transactions. In model driven en-
gineering however, formalisms often have a visual concrete syntax. To use
the existing algorithms we would have to transform models into a textual
representation. It is hard enough to reason about the importance of visual
elements for the algorithm, that transforming those features into a textual
representation (and back) adds unnecessary complexion. In this research we
will come up with a meaningful visual representation of transactions that
can be used as input to an algorithm.

Kiihne et al. [4] have stated the importance of explicitly modeling models
as well as model transformations. In this paper we will explicitly model the
frequent dataset mining algorithm. Explicitly modeling the algorithm has
some advantages. The specification is not hidden away in code, the specifi-
cation can be altered on the fly and its easier to reason about it. We will
show that our algorithm will be able to deal with the visual representation
of transactions.

We also apply the algorithm to a motivating example. The example will
show the possible benefits of applying data mining techniques to modeling
formalisms and DSL’s and why an explicit model of the algorithm is useful.

The reminder of the paper is structured as follows. In section 2, we will
elaborate the motivational example. In section 3, we discuss the explicitly
modeled implementation of the fp-growth algorithm. In section 4, we will
apply the algorithm to the example.

2. Motivational Example

To demonstrate the usefulness of using the frequent dataset mining algo-
rithm, we present a motivational example of a tile factory. The example will
show what the frequent dataset mining algorithm aims to solve.

2.1. The Tile Factory

The example tile manufacturer consists of three parts, the factory, the stor-
age facility and the retail. This example is simplified version of a supply

TileMetamodel

[|

A

/ H V |
' ' ' '
Tile Half Tile_White Tile_Cornerl Tile_Corner2

Instance Of

Customer Order Model

L
Modeled By
Availability |
Demand
V t € Tiles: Availability(t) = Demand(t) nput
" i II
Represents
Frequent Itemset
) Mining
g R Transport
Prothion Storage

Recommendations

Figure 1: Concrete syntax of the tile formalism.

chain. In figure 1, the full diagram of the tile factory is shown.

To improve customer experience, the company decided to use a visual do-
main specific language in which users can model their floors and how they
want to arrange the tiles. This allows customers to have an idea of the final
result and to make better estimations for the amount of tiles they need.
In the diagram of figure 1, the metamodel of this DSL can be seen in the
TileMetamodel box, an example of an instance model can be seen in the
Customer Order Model.

For the storage facility, a domain specific language is used to model the
current availability of each tile. This model imposes constraints on the tile
order models. After a certain amount of time a new order will be placed
with the factory.

A very well known problem in such a supply chain is the high cost of storing

Figure 2: Concrete syntax of the tile formalism.

the parts. Companies thus need a smart way of making the orders. A
recommender system can inspect the database of order models. By using
the frequent dataset mining algorithm, we can compute the confidence of
associations rules like: If tile A and B are frequently bought together, it
likely that tile C will also be bought. This information can be sent to the
production process and this will allow the production process to make a
better estimation on which tiles are needed.

In the next chapter we will discuss how the algorithm will be implemented,
using an explicit model.

3. The Explicitly Modeled Algorithm

In this section we will take a closer at an algorithm for frequent dataset
mining, the FP-Growth algorithm, and how we made an explicit model of
this algorithm.

3.1. The FP-Growth Algorithm

The algorithm used for this example was the FP-Growth algorithm [2]. This
algorithm tries to deal with both time efficiency as well as memory efficiency.
In this chapter we will discuss how the algorithm operates and how it was
explicitly modeled.

3.1.1. The Existing Algorithm

The FP-Growth algorithm uses frequent pattern trees (or FP-tree) to rep-
resent the frequent datasets. Each node in the fp-tree represents an item
that can occur in a transaction set and a path represents a possible way of
combining items in a transaction set. Each node also has an integer that

<root=>

T

<A:3> <B:2> '<C:1>

<B:il> <Ci2>----- -<C:2>
t7

<C:1>

Figure 3: An example of an FP-tree.

represents the amount of occurrences. Note that the term transaction set,
in this context, is used to denote a set of items that are bought together in
a transaction.

To limit the size of the tree, two approaches are used. First, the fp-tree
orders its transaction sets. Since the transaction set < A, B > is the same
as < B, A >, they are both represented by the same path in the tree. The
algorithm thus expects an ordered set. The second approach is that the tree
is an extended prefix tree structure. If two transaction sets have a common
prefix, they share the nodes that correspond to the items in the common
prefix.

The FP-tree is then constructed as follows. The algorithm handles every
transaction set in a single scan of the database. For every transaction set
there exists a unique corresponding path, starting from the root, in the FP-
tree. The amount of occurrences of each node in that path is then updated.

3.1.2. The FP-Tree Formalism

As mentioned before, the idea is to explicitly model a frequent dataset min-
ing algorithm. The FP-Growth algorithm looked very promising, since the
FP-Tree can be considered a model of the dataset.

The metamodel of the FP-tree formalism can be seen in figure 4. On this
modeling language, transformation rules can be defined to compute the con-
fidence of certain associations rules.

To apply this algorithm on an instance model of some formalism, we need a
way to express how the elements in the instance model of the source language
correspond to the nodes in the FP-Tree model. For this correspondence
model we created the Transaction formalism, we will later discuss how the

FP-Tree

T

FP-Node
. parent
+ name: smng
- amount: int
& child
Root

Figure 4: The metamodel of the FP-tree formalism.

instance model can be transformed into Transaction models. Once we have
a transaction set model, we will match it to a path from the FP-tree and
update the amount of occurrences.

3.2. The Transaction Set Formalism

The transaction set formalism is used to model a transaction sets and is
the glue between the source model and the FP-tree model. In this section
we will discuss how the formalism works and how the source model can be
transformed into a transaction set model.

Usually this algorithm is used in a context with a lot of classes and only a
small amount of instances. If the set I = {ay, ag, ..., a,} denotes the different
classes that can be ordered in a transaction, a transaction set is a subset of
I, ignoring the number of occurrences of each item in a single transaction.
In the context of DSL’s and modeling languages, the number of classes is
often much smaller and the amount of instances of each class much larger,
they also have a very specific semantics. Therefore we need to take into
account that the generated transaction sets represent the original model
in a meaningful way. This is where the explicit modeling approach really
shows its benefit. The implementation is visual and can be altered directly,
without having knowledge of any programming language. People who have
an extensive knowledge about the semantic domain, but not about computer
science, can easily tailor the algorithm to their needs and reason about how
the transactions should be represented.

Transaction Set Metamodel FP-Tree Metamodel

FP-Tree

TransactionSet

T !

FP-Node
Transactionltem & g +name: string

parent

- amount: int

child

Root

Transactionitem_1 Transactionitem_2 Transactionitem_n

Figure 5: The Transaction Set Metamodel, the FP-Tree metamodel and their correspon-
dence link.

In the next section, we will discuss how we will apply this explicitly modeled
algorithm to the motivational example.

4. Applying the algorithm to the example

We will now discuss how we can apply the algorithm to the example dis-
cussed in section 2. We will also discuss the necessary steps to auto generate
the transaction formalism.

4.1. From Order Model To Transaction Model

In section 3.2, we discussed that transforming the source model into a trans-
action is not so trivial. The problem is that DSL’s often have a small amount
of classes, but a big amount of instances, the tile formalism is perfect ex-
ample for this. If we would apply the normal approach of making a single
transaction for each model, containing only one item for each class of tile, if
it is present in the model, the output of the algorithm won’t have a signifi-
cant output.

If we look at an example model in figure 6, we want to express that the
items half tile and the the black corner tile appear more frequently together
than the half tile and the black white tile. The approach we used, was to

Figure 6: An example of an order model.

generate as much of the largest possible transaction set as possible, without
reusing tile instances. Then repeat the process for smaller sets, until every
tile instance is represented in a transaction.

If this approach would not fit the needs of the factory, the algorithm can be
altered immediately.

When the model of the transaction set is created, we can again use explic-
itly modeled transformations. These transformations are very general, due
to the fact that there is a superclass for transaction items and that every
transaction set has a unique corresponding path in the FP-tree.

4.2. Dealing With Composite Patterns

A problem specific for visual formalisms is that a user might be interested in
a transaction item that represents a composition of elements from the source
language. An example in the tile formalism is a composition of corner tiles
that together form a circle, this pattern can be seen twice in figure 6.

Since a composite pattern is composed of atomic elements, the question
raises whether we are still interested every atomic element, or only the ele-
ments that are not part of a composite pattern.

In the example, we considered every element, whether is part of a pattern
or not.

Creating these patterns and transforming them into the transaction set items
requires extensive domain knowledge. This is another example of the useful-
ness of giving the domain experts the tools to custom tailor the algorithm.

Transaction Set Metamodel

TileMetamodel

Tile

.......................................

[Tile_Half | [Tile White | [Tile Comer1 | [Tile Cornerz | | | |

[1 J1 I

Figure 7: The tile metamodel (left) and the transaction metamodel (right).

In our example the transaction set formalism and the transformations on the
formalism are implemented by hand. However, it should be feasible to auto
generate this language. For every non abstract class in the source language,
there should be a corresponding transaction item class, that is a subclass of
Transactionltem. For the composite patterns, an extra formalism is needed
in which the domain knowledge can be captured in patterns. The technique
for every non abstract class can be used for every instance model in the
composite pattern formalism. Afterwards, a transformation should be gen-
erated, that transforms an instance of a class or pattern in the source model
into the corresponding transaction item.

Due to some limitations in the model transformations of AToMPM, we
weren’t able to auto generate the language, but the approach should work
with some changes to the transformation mechanics or by using code gener-
ation to create the json files of the models.

5. Related Work

Models and modeling formalisms have been used widely in the field of supply
chains. A multiagent approach for modeling and simulating a supply chain
was proposed by Swaminathan et al. [6]. The multi-agent system allows
the different components to make autonomous decisions. Their formalism
is used to model and simulate supply chains, our approach is more focused
gathering information and making recommendations in real time.

Waller et al. [7] discussed the need for experts in data science in a supply
chain management context. They mention a big lack of research in this field.
Our approach tries to deal with this problem by making the data mining
algorithms more accessible to the domain experts.

The benefits of explicit modeling has been shown by Khiine et al.[4]. They
proposed a way of explicitly modeling model transformations.

Augmenting DSLs with lower-level constructs is not a novel idea. Meyers et
al. [5] investigate the possibility of incorporating property-based reasoning
on the DSL level. In their case, the reasoning typically captured LTL and
CTL formulas is elevated to the level of the DSL, resulting in much easier
design workflows for the stakeholders working with the DSL. Our approach
is similar in a sense that we also incorporate a reasoning typically captured
below the level of the DSL.

6. Conclusion And Future Work

In this paper we proposed an approach to deal with information gathering
in modeling languages and DSL’s by explicitly modeling the data mining
algorithm. For the scope of this project, we only considered the frequent
dataset mining algorithm.

The idea was to create an explicit and visual model that models the al-
gorithm under study. The explicitly modeled algorithm has the advantage
that both model and algorithm are on the same level of reasoning. The
implementation can also be altered on the spot, allowing fast adaptations
to changes in the industry.

We also applied the algorithm to an example of a simplified production line.
This example showed that using data mining the order models can reduce
the storage cost by making smarter orders to the production factory. We
showed that a problem in this setup is that the mining algorithm often
needs custom tailoring, but the domain experts often don’t have a strong
background in computer science. The explicitly modeled algorithm offers the
domain experts a means of tailoring the algorithm to their needs, without
the need of extensive knowledge on programming.

In future work, we will be generalizing this approach. We will aim to propose
a framework in which the DSL and the mining algorithm can be changed
independently. We will also take a closer look into the auto generation of
the correspondence models (in the example, this was the transaction set
formalism).

By explicitly modeling the algorithm, we create a certain overhead, which

10

has an impact on performance. We will try to analyze this cost in perfor-
mance and how we can optimize it.

11

Bibliography

1]

2]

Andrej Dyck, Andreas Ganser, and Horst Lichter. Model recommenders
for command-enabled editors. MDEBFE2013, 2013.

Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without
candidate generation. In ACM sigmod record, volume 29, pages 1-12.
ACM, 2000.

Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard
Friedrich. Recommender systems: an introduction. Cambridge Univer-
sity Press, 2010.

Thomas Kiihne, Gergely Mezei, Eugene Syriani, Hans Vangheluwe, and
Manuel Wimmer. Explicit transformation modeling. In International
Conference on Model Driven Engineering Languages and Systems, pages
240-255. Springer, 2009.

Bart Meyers, Romuald Deshayes, Levi Lucio, Kugene Syriani, Hans
Vangheluwe, and Manuel Wimmer. Promobox: A framework for gener-
ating domain-specific property languages. In International Conference
on Software Language Engineering, pages 1-20. Springer, 2014.

Jayashankar M Swaminathan, Stephen F Smith, and Norman M Sadeh.
Modeling supply chain dynamics: A multiagent approach. Decision sci-
ences, 29(3):607-632, 1998.

Matthew A Waller and Stanley E Fawcett. Data science, predictive
analytics, and big data: a revolution that will transform supply chain
design and management. Journal of Business Logistics, 34(2):77-84,
2013.

12

