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Abstract

Frequent itemset mining is a well known algorithm within data mining ap-
plications. Existing implementations of the algorithm depend on a textual
representation of the transactions. When dealing with a formalism that
has a visual concrete syntax, finding a meaningful textual representation
can be challenging. In this paper we will make a visual representation of a
transaction using mde techniques. We will also show an explicitly modeled
algorithm for frequent itemset mining.
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1. Introduction

Recommender systems has become a ubiquitous concept in the world of com-
puter science. By analyzing past behavior, a recommender system tries to
recommend certain items to a user. A typical applications of recommender
systems can be found in e-commerce sites like amazon.com. A user will be
given a set of items that he is likely to be interested in. Andrei Dyck et al.
[3] have mentioned the fact that modeling environments might benefit from
recommender systems, however current research in this field is limited.
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A widely used technique in recommender systems is frequent dataset mining.
Given a database of transaction, the technique tries to identify which items
appear frequently together in a transaction. A transaction is a set of items,
in the context of e-commerce a transaction can be interpreted as a set of
items a user buys together. Currently, many algorithms have been developed
to deal with this problem, but they all operate on textual transactions. In
model driven engineering however, formalisms often have a visual concrete
syntax. To use the existing algorithms we would have to transform models
into a textual representation. It is hard enough to reason about the impor-
tance of visual elements for the algorithm, that transforming those features
into a textual representation (and back) adds unnecessary complexion. In
this research we will come up with a meaningful visual representation of
transactions that can be used as input to an algorithm.

Thomas Kühne et al. [6] have stated the importance of explicitly modeling
models as well as model transformations. In this paper we will explicitly
model the frequent itemset mining algorithm. Explicitly modeling the algo-
rithm has some advantages. The specification is not hidden away in code,
the specification can be altered on the fly and its easier to reason about
it. We will show that our algorithm will be able to deal with the visual
representation of transactions.

We will also apply the algorithm to a motivating example situation of a
tile factory. The example will show the possible benefits of applying data
mining techniques to modeling formalisms and dsl’s.

2. Related work

2.1. Mining frequent itemsets

Frequent itemset mining is a very well known problem within datamining
and plays an essential role when mining associations, frequent patterns,
causal structures [7], etc. Many algorithms have been proposed, such as the
apriori algorithm [1], eclat [9] and the fp-growth algorithm [5]. The idea is
that, given a database containing itemsets, the algoritm outputs the support
of every possible superset of items. The support of an itemset indicates that
a certain combination of items appears frequently in the database. The
support can be used to compute the confidence of association rules (these
rules are explained in section 2.2 ).
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These algorithms work on batches of data. For this project it would be inter-
esting to have an algorithm that is specialized for an incremental database.
The algorithm that uses CATS-Trees [2] seems a very good candidate, since
it is an extension on the FP-Tree, allowing a compressed representation of
the itemsets.

2.2. Association rules

Association rules are rules of the form [x, y] → [a][8]. The meaning of such
a rule is that if x and y both appear in the same itemlist, it is very likely
that a will also be in this itemset. If we can find this kind of associations
regarding the elements in a modelling formalism, we can make an estimation
of how likely it is that a user will use that element, given the current model.

2.3. RETE Networks

The RETE network, as described by Forgy[4] is an elegant implementation
of a many-object/many-pattern matching algorithm. The idea behind it is
to limit iterating over the objects as well as the iterating over patterns. The
first idea is to store with each pattern a list of objects that it matches. This
way, when a production is performed, the algorithm only has to look at the
sets of the pattern, rather than scanning the whole database. When a new
item enters the set of objects, or an old one leaves it, the patterns that match
it will update their sets. To compute those patterns, the match algorithm
will not iterate over every pattern. Based on the patterns, the algorithm
will build a network of nodes, each containing a test for a single attribute
of the object. When two patterns have the same test on an attribute, the
node will be shared among the two patterns, meaning that the test would
only be performed once.

The RETE network might be a candidate to address the problems raised in
the motivating example.

3. Motivating example

To demonstrate the usefulness of the study, an example situation will be
used. As example, we will use a tile manufacturer/retailer that is interested
in a visual formalism for modeling a clients floor and how he would place
the tiles. This model will allow the client to make a more precise estimation
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Figure 1: Concrete syntax of the tile formalism.

Figure 2: Transaction model of tiles.

on the amount of tiles required and he can immediately see how the pattern
of tiles will look on his floor. Figure 1 contains an example of the syntactic
elements for tiles.

These models can be mined for useful information. A possible interest might
be that we want to mine association rules. These rules would indicate how
likely a user would use certain tiles, given a partially completed model. To
do this we need to find a way to transform the model into a meaningful
transaction. In this case, a transaction should contain the set of all tiles in
the model, an example of such a transaction model can be seen in Figure 2.

Another point of interest might be to look for components that are fre-
quently ordered together. This information is very interesting for proactive
production of certain components. The model of a transaction from the
previous example will not produce the desired output, instead we can make
a formalism that models the different components needed to make the tiles
and make model transformation to a transaction model as shown in Figure
4.

We can easily make the link between this example and Industry 4.0. Through
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Figure 3: Concrete syntax for the component formalism.

Figure 4: Transaction model of components.

mining the models made in the formalism, we can feed information into
the production equipment, such that it can automatically and pro-actively
change the production rates of certain components.

We can also see that the problem in the example is related to multi paradigm
modeling. We have to deal with two formalisms, both applying to a different
level of abstraction.

4. Project

The project will consist out of two parts. The first part is to create a simple
formalism for the example that we are going to observe. Next, we will need
model transformation to go from a model in the formalism to a meaningful
transaction. We will create the formalism and transformations in AToMPM,
since we can use autosnapping and containment based associations.

The second part of the project will be to model the algorithm. It might be
useful to model the algorithm using the eclipse modeling framework. This
framework has been proven to be highly efficient, regarding execution time.
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If time allows it, we can do a performance study against a similar code based
algorithm.

5. Planning

25 December 2017 A working formalism for making tiles in AToMPM.

31 December 2017 Having a working model transformations to go from
a model to a transaction model.

10 January 2018 Model of the frequent itemset mining algorithm.

20 January 2018 Interpret results.

29 January 2018 Finish report and presentation.
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