
MDE Assignment 6:

Translational Semantics - Rule-Based Model Transformation

Joeri Exelmans
contact: joeri.exelmans@uantwerpen.be

December 4, 2024

1 Introduction

In this assignment, we will implement the same semantics of our ‘port’-DSL, that we are already familiar
with from previous assignments, but this time, we will do so by transforming our DSL to Petri Nets.

The benefit of transforming to another formalism, is that the entire language toolchain (in the case of
Petri Nets: interactive simulation and highly optimized analysis/model checking) becomes available to us.

The translation will be done by means of rule-based model transformation, which we are already familiar
with.

2 Translational Semantics in muMLE

Model transformation in muMLE always happens within the same formalism. To transform across for-
malisms, we perform a simple trick of merging the meta-models of the input and output formalisms. In our
case, this means merging the meta-models of the ‘Port’-DSL and the ‘Petri Net’-language.

.
When merging (meta-)models, naming collisions can occur. In this assignment, the types of
both formalisms have been named specifically to avoid naming collisions.

Once we have our merged meta-model, we modify it in one more way: We add an abstract class named
Top, which becomes the superclass of all classes1. We also add an association named generic link, whose
source and target is Top. This effectively allows generic link to connect anything with anything.

ò
Did you know: adding the Top- and generic link-types, and the necessary inheritance-
links, is also implemented with model transformation!

The merged meta-model (Figure 1) can be found in examples/semantics/translational/merged mm.od.
It was generated by the script examples/semantics/translational/regenerate mm.py. Note that the
merged meta-model is also a valid meta-model for our existing ‘Port’-language: it merely contains additional

1In type theory, the ‘top’-type is the supertype of all types. See https://en.wikipedia.org/wiki/Top_type

1

mailto:joeri.exelmans@uantwerpen.be
https://en.wikipedia.org/wiki/Top_type

CapacityConstraint

shipCapacity : Integer

PNPlaceState

numTokens : Integer

WorkerSet

numWorkers : Integer

S tate

Stateful

Source
Clock 1..1

tim e : Integer

BerthState

status : S tring

Top

Place

WorkerSetState

B erth

Generator

PNTransition

PNConnectable

Sink
ConnectionState

moved : Boolean

PlaceState

numShips : Integer
PNPlace

00000000_0000_0000_0000_0000000044de

00000000_0000_0000_0000_000000004544

o f

1 .. 1

a rc

0 .. *

canOperate

1 .. *

inh_arc

0 .. *

connection

0 .. *

pn_of

1 .. 1

generic_link

0 .. *

isOperating

0 .. *

capacityOf

1 .. *

Figure 1: Our merged meta-model: Port and Petri Nets

types. In the general case, adding new types to a meta-model does not break compatibility with existing
models.

Next, the merged meta-model is RAMified, and we can finally create model transformation rules that
transform ‘Port’-models into ‘Petri Net’-models. We will do this not in a single rule, but with a multiple
rules, which build the Petri Net model incrementally. We will also not erase the ‘Port’-model (or any of
its elements), but rather “append” the Petri Net model to it, and we will create traceability-links from the
created ‘Petri Net’-elements back to their respective ‘Port’-elements.

2.1 Example: Translate Port-Place into Petri Net-Place

The following LHS will look for a Place and its PlaceState (from the ‘Port’-language)

Listing 1: LHS

port_place:RAM_Place

port_place_state:RAM_PlaceState

port_of:RAM_of (port_place_state -> port_place)

The RHS will create a Petri Net-Place with the same number of tokens as the number of ships in the
Port-PlaceState:

Listing 2: RHS

We repeat the entire LHS:

port_place:RAM_Place

port_place_state:RAM_PlaceState

port_of:RAM_of (port_place_state -> port_place)

To create: a Petri Net -place , and link it to our Port -place

pn_place:RAM_PNPlace {

new feature: you can control the name of the object to be created

using names based on the Port -elements makes the translation much more understandable!

name = ‘f"ships_{get_name(matched (" port_place "))}" ‘;

}

place2place:RAM_generic_link (pn_place -> port_place)

2

Also create: a Petri Net -PlaceState (indicating the amount of tokens in our newly created place)

pn_place_state:RAM_PNPlaceState {

RAM_numTokens = ‘get_slot_value(matched(’port_place_state ’), "numShips ")‘;

}

:RAM_pn_of(pn_place_state -> pn_place)

We also define a NAC, to prevent the rule from firing more than once for every match. In this case, the NAC
simply consists of all the elements from the RHS:

Listing 3: NAC

port_place:RAM_Place

port_place_state:RAM_PlaceState

port_of:RAM_of (port_place_state -> port_place)

pn_place:RAM_PNPlace

place2place:RAM_generic_link (pn_place -> port_place)

pn_place_state:RAM_PNPlaceState

:RAM_pn_of(pn_place_state -> pn_place)

This rule, and another rule translating a Port-connection into a Petri Net-transition are included in the
starting point for this assignment.

2.2 Specification of Semantics

Note: this specification has not changed since the previous assignment.

� A ship can move along a connection, only:

– if there is at least one ship in the source of the connection, with some exceptions:

* A Generator can be considered a special kind of source, always having ships available.

* A ship can only leave a Berth if it has been served.

– if there is enough capacity in the target/sink of the connection.

– if no ship has moved yet over the connection, during the current time step.

� Further, a connection only becomes ‘active’ if all connections after it have had a chance to make a
move.

– For instance, in ??, the connection ‘outboundPassage’ → ‘served’ occurs after ‘outboundBerth2’
→ ‘outboundPassage’. The former will thus have priority.

� Along an ‘active’ connection, if a ship can move, it must move, and otherwise, the connection is skipped
(marking it as ‘moved’ without having moved a ship).

� If a ship is at a Berth, and the status of the Berth is “unserved”, a worker may be assigned to the
Berth, but only if:

– There is a ‘canOperate’-link from the WorkerSet to the Berth

– The WorkerSet still has a worker available. In other words, the number of outgoing ‘isOperating’-
links must be smaller than the size (‘numWorkers’) of the WorkerSet.

� If none of the above actions are possible anymore, a time step ends, having the following effects:

3

– The current time is incremented.

– For every worker that is operating a Berth, the Berth’s status changes to “served”, and the worker
stops operating the Berth. (In the next time step, the worker can be assigned again to a Berth)

– The ‘moved’ flag of every connection is reset to False.

3 Getting Started

� Do a git pull to get the latest sources.

� Under examples/semantics/translational, you’ll see the following files:

– Files you should not edit:

* merged mm.od The merged meta-model.

* regenerate mm.od The script that was used to generate the merged meta-model.

* runner exec pn.od Once you have generated a Petri Net, you can execute it with this script.

– Files you should edit:

* runner translate.py This is the script that will perform the Port-to-Petri Net translation.

* rules/gen pn In this directory, you will place your translation rules. There are already two
rules here, which you can (but don’t have to) use as a starting point for your solution.

The script runner translate.py that will carry out the translation, will execute the rules in a specific
manner. Rules are specified in an explicit order of priorities. It will first try to find a match for the highest-
priority rule, and execute that rule for the first match that was found. Then, it will again try to find a
match for the highest-priority rule, and so on. Only if no match is found, will the next rule be attempted.
This is repeated until all rules have been attempted. You can construct your rules such that the Petri Net is
generated in an iterative manner.

ò
Executing the translation rules can take some time, especially as the model grows large. In
order not to run the entire transformation from scratch, the runner translate.py script will
save a snapshot of the ongoing translation every time a rule has been “exhausted” (it has fired
as much as it could). When you re-run the script, the script will re-load existing snapshots
rather than re-executing rules. For instance, if your translation consists of 8 rules, and you
modify the last rule, you don’t want to re-execute the first 7 rules. To force rule execution,
simply delete the snapshot-files.

To execute a generated Petri Net, simply run runner exec pn.od with the model file (e.g., the most
recently created snapshot) as a parameter.

4 Tips

� You can work incrementally:

– for instance, first generate objects, then links, in (many) separate rules.

4

– more concretely, you can first create Petri Net places that store the remaining capacity of a
CapacityConstraint, and later connect those places to the correct Petri Net transitions.

� When working incrementally, you can match traceability links (of type generic link) that were created
by earlier rules, in the LHS of a later rule.

� You’ll have to think of a way to encode the entire Port-run-time state into a Petri Net. For instance,
how would you encode the status of a berth (served/unserved)? You’ll need to think in advance about
all these things.

� Work out the transformation rules visually on a piece of paper, before writing them down in muMLE.
Otherwise it is easy to get lost.

� When creating an object or link in the RHS of a rule, you can specify its name with the name-attribute,
as demonstrated in Listing 2. By making the names of Petri Net elements refer to the names of the
Port-elements to which they relate, you can greatly improve the understandability of your generated
Petri Net.

ò
One (dirty, but useful!) example of exploiting the name-attribute is the following: Sup-
pose I am creating two places for a Berth named ‘b1’: one that counts the number of
ships in the Berth, another that holds a token if a worker is assigned to it. By naming
the places ‘ships b1’ and ‘worker b1’, I can distinguish between them. In a later rule’s
LHS, I can even write a condition that checks the name (e.g., using the Python function
.startswith("ships ")) if I want to match with a specific kind of place. This also has
the benefit of speeding up the matching!

� When rendering the Petri Net with GraphViz, try switching engines if you’re getting poor results. The
‘neato’-engine seems to work quite well for Petri Nets. Also remember that the result does not have to
be perfect.

� This will be quite a big assignment: start early!

5 Practical

� Students work individually.

� Submit, via Blackboard, a ZIP file containing:

– your rules directory, containing the transformation rules

– your runner translate.py file

– the result of your translation (.od-extension)

– the GraphViz-rendered Petri Net (as a figure)

– a small report, where you explain the different rules you created.

� Deadline: Tuesday 17 December 2024, 23:59.

5

6 API

Here is the API, once more:
Availability in Context

Meta-Model
Constraint

Model Trans-
formation Rule

Local Global
NAC
LHS

RHS
OD-
API

Meaning

Querying
this :obj ✓ ✓ ✓ Current object or link
get name(:obj) :str ✓ ✓ ✓ ✓ ✓ Get name of object or link
get(name:str) :obj ✓ ✓ ✓ ✓ ✓ Get object or link by name (inverse of get name)
get type(:obj) :obj ✓ ✓ ✓ ✓ ✓ Get type of object or link
get type name(:obj) :str ✓ ✓ ✓ ✓ ✓ Same as get name(get type(...))

is instance(:obj, type name:str
[,include subtypes:bool=True]) :bool

✓ ✓ ✓ ✓ ✓
Is object instance of given type
(or subtype thereof)?

get value(:obj) :int|str|bool ✓ ✓ ✓ ✓ ✓
Get value (only works on Integer,
String, Boolean objects)

get target(:link) :obj ✓ ✓ ✓ ✓ ✓ Get target of link
get source(:link) :obj ✓ ✓ ✓ ✓ ✓ Get source of link
get slot(:obj, attr name:str) :link ✓ ✓ ✓ ✓ ✓ Get slot-link (link connecting object to a value)
get slot value(:obj,
attr name:str) :int|str|bool

✓ ✓ ✓ ✓ ✓ Same as get value(get slot(...)))

get all instances(type name:str
[,include subtypes:bool=True]

) :list<(str, obj)>
✓ ✓ ✓ ✓ ✓

Get list of tuples (name, object)
of given type (and its subtypes).

get outgoing(:obj,
assoc name:str) :list<link>

✓ ✓ ✓ ✓ ✓ Get outgoing links of given type

get incoming(:obj,
assoc name:str) :list<link>

✓ ✓ ✓ ✓ ✓ Get incoming links of given type

has slot(:obj, attr name:str) :bool ✓ ✓ ✓ ✓ ✓ Does object have given slot?

matched(label:str) :obj ✓ ✓
Get matched object by its label
(the name of the object in the pattern)

Modifying
delete(:obj) ✓ ✓ Delete object or link
set slot value(:obj, attr name:str,
val:int|str|bool)

✓ ✓
Set value of slot.
Creates slot if it doesn’t exist yet.

create link(link name:str|None,
assoc name:str, src:obj, tgt:obj) :link

✓ ✓
Create link (typed by given association).
If link name is None, name is auto-generated.

create object(object name:str|None,
class name:str) :obj

✓ ✓
Create object (typed by given class).
If object name is None, name is auto-generated.

If there is an API function that you would like to see added, contact me.

6

	Introduction
	Translational Semantics in muMLE
	Example: Translate Port-Place into Petri Net-Place
	Specification of Semantics

	Getting Started
	Tips
	Practical
	API

