
Assignment 1

Building evacuation modelling in metaDepth

Cláudio Gomes
claudio.gomes@uantwerp.be

November 21, 2019

1 Practical Information

The goal of this assignment is to design a domain-specific modelling language
(formalism) for representing the movement of people in a building floor, in case
of an emergency.

The language is called Bmod.
This section describes the tasks that you need to complete, and the next

section gives the requirements about each individual task.
The solution to each tasks depends on the way you solved the other tasks.

For example, Task 4 (below) is strongly related to Task 1. So read carefully the
whole document and make a solution sketch of each task, before implementing
the solution.

The tasks are purposefully ambiguous. Use common sense or ask Cláudio if
you are unsure about what a task means.

Tooling. The tools used in this assignment are research prototypes. There-
fore, expect bugs and usability issues. Feel free to report them to Cláudio, or
to the tool’s developers. Make sure to solve each task incrementally, and either
make regular backups of the input files, or use version control software. These
tools can crash and corrupt the input files.

Section 4 describes known bugs and general advice.

1.1 Task Overview

Task 1 Describe the abstract syntax of the Bmod language in the metaDepth
tool.

Task 2 Describe validity constraints that any model must obey in order to con-
form to Bmod.

Task 3 Describe the operational semantics of Bmod.

Task 4 Use Bmod to model a building floor and emergency routes.

Task 5 Write a report.

1

mailto:claudio.gomes@uantwerp.be


1.2 Deadline, Logistics, and Plagiarism

Complete this assignment in groups of 2.
One, and only one, person in the group must submit the solution on black-

board before the deadline announced on the course web page: http://msdl.

cs.mcgill.ca/people/hv/teaching/MSBDesign/.
Discussion on the following topics with your classmates is encouraged :

• Interpretation of the assignment requirements;

• Technical difficulties with the tools;

Discussion on the main concepts of the domain that may lead to similar
solutions is discouraged. Creating a domain model is a highly creative process,
and therefore it is unlikely that two groups will have a similar solution.

Contact Cláudio Gomes (claudio.gomes@uantwerp.be) if you have questions
and/or need some help.

2 Requirements

2.1 Task 1

The Bmod language is to be used by anyone (that is, non computer experts)
that wants: a) to design a new floor evacuation plan, or b) to study an existing
plan. To accomplish this, it should be possible to use Bmod to model:

1. floor plans (rooms, doors),
2. emergency signs (fluorescent arrows indicating the path to an emergency

exit),
3. the cause(s) of the emergency (a fire),
4. the behavior of the occupants, and
5. dangerous conditions that should not happen during the evacuation (e.g.,

a room becoming too crowded).

2.1.1 Floor plans

To model the floor plans, it must be possible to represent rooms and door, and
how they are connected. Furthermore, each room is comprised of multiple cells.
Each person can be in one cell at a time, and move to an adjacent cell. No two
occupants can be in the same cell.

2.1.2 Emergency Signs

To model the emergency signs, it is enough that each sign represents a direc-
tional relationship between two doors (indicating the next door after one door
is crossed). There can be bifurcations in the emergency path.

2.1.3 Cause of Emergency

To model the cause of the emergency, it is sufficient to represent in which cell
the cause is. The only cause of emergency we consider is a fire.

2

http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/
http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/
mailto:claudio.gomes@uantwerp.be


2.1.4 Behavior of Occupants

The behavior of each occupant has two phases: perception and action. The
perception models how the occupant interprets the cues in its environment to
conclude that there is a fire. The action models what the occupant does after
the perception phase.

For the perception, the following list shows the possible perception levels
(see Task 3 for their meaning):

• Nervous;
• Listener;
• Smeller;
• Observer.
For the action, the occupant can have one of the following profiles (see Task 3

for their meaning):
• Newcomer;
• Experienced;
• Your own action profile (which you will have to implement in Task 3).
Each occupant should therefore be configured with a pair (Perception,Action),

where Perception and Action take one of the above values.

2.1.5 Dangerous Conditions

During the simulation of the building evacuation, it is important that the user
is warned whenever specific conditions happen. The user of Bmod should be
able to model generic conditions regarding room occupancy:

• A specific room has an occupancy greater than a given number.
The user can create as many conditions as he/she wishes.

2.1.6 Other requirements

Your metamodel should include the appropriate multiplicities for each associa-
tion, and at least one example of inheritance.

2.2 Task 2

Since Bmod is made to model a single building floor, you must make sure that
any valid Bmod model obeys the following constraints:

1. It should be possible for a person to move from any room to any other
room;

2. Your first own constraint;

3. Your second own constraint.

To showcase your properties, include the following (simple) models, for each
constraint:

• a model violating that, and only that, constraint; and
• a model satisfying that, and all the other, constraints.

These models do not have to be realistic.

3



Tooling. To implement this task, use the validation functionalities provided
by metaDepth. Since the tool is a prototype, there can be bugs in the validation.
If you suspect that a bug is causing your validation code to fail (or crash),
take note of the validation code, remove it, and implement the validation in a
checkValidity.eol script, that throws an exception if the model is not valid.
Finally, mention this incident in the report, and include the validation code that
did not work.

2.3 Task 3

Bmod users will run simulations with the intent is studying multiple evacuation
scenarios.

In this task, you must implement the operational semantics of a given Bmod
model, in a operationalSemantics.eol script.

This script will simulate the movements of people, and fire, within the build-
ing floor. At each simulation step, the movements of the people, and fire, will
be computed. A person can only move once, as well as the fire. Once every
movement has been performed, the dangerous conditions are checked, warnings
are issued, and the simulation proceeds to the next step, where everything is
repeated again.

The computation of the occupants’ movement is done before that of the fire.
That is, only when every occupant has had its chance to move, will the fire be
propagated.

The output produced should be both readable by a person, and easy to parse
(because that will be useful in Assignment 5).

2.3.1 Occupant Movement

There are two phases to compute a person’s movement:
1. Decide to which cell to move;
2. Move to that cell.
The first phase is dictated by the perception and action profiles of the person.

The perception controls when a person concludes that there is a fire. The profile
controls which cell the person will move to.

The perception levels, and their meaning, are:
• Nervous — If the fire alarm rings, he/she concludes that there is a fire.
• Listener — Only when a nearby person says that there is a fire, will he/she

conclude that there is fire.
• Smeller — Only when he/she smells smoke, will he/she conclude that

there is fire.
• Observer — Only when he/she sees fire, will he/she conclude that there

is fire.
The fire alarm rings everywhere in the building floor, when there is a fire.

The moment a person concludes that there is a fire, he/she will always tell any
person in the same room that there is a fire. A person smells smoke when there
is a fire in the same room as the person. A person sees fire when it is in the
adjacent cell.

After a person concludes that there is a fire, he/she will move according to
his/her action profile:

4



• Newcomer — Picks the adjacent cell that brings her/him closer to the
nearest person in the room, or chooses no cell;

• Experienced — Picks the adjacent cell that brings her/him closer to the
emergency exit pointed out by the emergency signs. If there is a bifurca-
tion, he/she picks one emergency path and sticks to it.

• Your own action profile — Moves to an adjacent cell according to your
implementation.

The adjacent cells to a person are in four possible directions (North, South,
East, West).

After deciding which adjacent cell to move to, the person will move to it if
there is no obstruction (either a fire, or a person in that cell). If there is an
obstruction, the person will try to move to a free cell that is adjacent to the
obstruction, without moving over it.

For example, if a person has chosen to move North, but the North cell is
obstructed, then the person will try to move to either to the East or West cells
of the obstruction. In this example, the East and West cells of the obstruction
are the only cells available to move to.

Another example: if a person has chosen to move East and that cell is
obstructed, then the person will try the cells that are North and South of the
obstruction.

If the person did not choose any cell to move to (e.g., when he/she decides
that there is no fire), or there are no cells available to move to, then the person
does not move.

2.3.2 Fire Movement

The fire propagates to every adjacent cell where there is no fire. Once in a cell,
the fire remains in that cell until the end of the simulation. If the fire propagates
to a cell where a person is, that person dies and cannot move again.

2.4 Task 4

Pick a non trivial floor of the current building, and model it, modelling at least
one dangerous condition. Perform multiple experiments, each showing one of
the following scenarios:

• The dangerous conditions is satisfied at least once; and
• A contention point (i.e., a point where people accumulate for long periods

of time).
A non trivial floor should include at least two emergency exits.

2.5 Task 5

The grading process depends on a well written, and concise, report.
A good report should:

1. Explain the general approach to each task, and in case of ambiguities,
describe your decisions and rationale.

2. Explain the structure of your submission, and the purpose of each indi-
vidual file.

5



3. Describe any issues encountered with the tools, and how they were over-
come.

4. Give an estimate of how many hours in total the group spent to solve the
assignment. This measure is not to evaluate the efficiency of the group,
but rather to have an estimate of the relative difficulty of the assignment,
and provide a fairer grade.

A script (bash, or powershell, or cmd, etc. . . ) should be included that runs
(or shows how to run) each of the simulations.

Optionally, a screencast showcasing the language and the simulations can be
included.

3 Tools and Documentation

• MetaDepth main page, documentation, examples, and download:
http://metadepth.org/

4 Tips, Tricks, Pitfalls, and Issues

Below is a list of known obstacles, and advice, while working with metaDepth:

Advice. Build your metamodel (and models) incrementally, checking whether
they work at each point, and make use a version control system.

Advice. Do not use reserved words for variable/constraint/class names. Ex-
ample reserved words are: in, for, Node, etc. . . In case you mistakenly used a
reserved word, the error message that MetaDepth gives might not be helpful in
tracing the error to the use of the reserved word!

Bug. Avoid having nested models. They are not parsed correctly by metaDepth.

Bug. Avoid using derived attributes. If you need derived attributes, these can
be computed in the .eol script, using assignments of the form

element.~derivedAttr = expression;

Bug. Any instruction after the first operation declaration in EOL is ignored.
So, code instructions first, and then operation declarations.

Bug. If a model element has attributes that do not correspond to the corre-
sponding metamodel element, metaDepth will not throw an error message, and
will most likely not parse the other attributes of the element correctly. For ex-
ample, if the metamodel declares a person to have a name and an age attribute,
and the model instantiates a person with pname = John and age = 20, it is
likely that John’s attributes will not be parsed.

6


	Practical Information
	Task Overview
	Deadline, Logistics, and Plagiarism

	Requirements
	Task 1
	Floor plans
	Emergency Signs
	Cause of Emergency
	Behavior of Occupants
	Dangerous Conditions
	Other requirements

	Task 2
	Task 3
	Occupant Movement
	Fire Movement

	Task 4
	Task 5

	Tools and Documentation
	Tips, Tricks, Pitfalls, and Issues

