
Sirius modeling tool use in electrical system
applications

Arkadiusz Ryś
University of Antwerp, Belgium

Abstract

Sirius1 is an Eclipse project which is built on top of the Eclipse modeling
technologies to aid in designing a graphical modeling workbench. A user
can create meta-models and models on top of these meta-models which can
then be used to validate whether constraints are met. Additionally, model
transformations and code generation can be achieved using plugins. I will
apply Sirius to a use-case modeling electrical systems. Consequently, I will
compare Sirius against other graphical modeling tools. Sirius has the added
benefit of allowing users to work directly within the graphical representation
of the generated models [4]. Therefore, the goal of this paper is to create
an overview of the functionalities of Sirius and compare it to other known
modeling tools.

Keywords: Model-Driven Engineering, Sirius, Eclipse Modeling
Framework, Electrical Systems

1. Introduction

Sirius is a model driven engineering tool developed by Obeo and Thales
with the help of the community. It is a graphical tool where the user can edit
the properties of diagrams and other visualizations within the visualizations
themselves. As model driven engineering can be used to develop domain spe-5

cific applications where the representation can be used by a domain expert,
it lends itself greatly for the case of designing complex electrical systems. I
will discuss how, where and why such an application is viable.

Email address: Arkadiusz.Rys@student.uantwerpen.be (Arkadiusz Ryś)
1Sirius can be found at http://www.eclipse.org/sirius/

Preprint submitted to University of Antwerp January 10, 2020

http://www.eclipse.org/sirius/


The rest of the publication will be split into the following sections. Section
2 will elaborate more on the details of the architecture on top of which Sirius10

is designed. The many features and capabilities of Sirius will be presented
in section 3. Section 4 follows, comparing Sirius to other tools with section
5 explaining how I will apply Sirius to my problem. I give application
examples in section 6. Section 7 finally concludes.

2. Architecture15

Figure 1: Sirius architecture model overview.

Eclipse. Sirius is built on top of the eclipse platform as seen in Figure 1
2. Eclipse is rather extendable and Sirius acts like a plugin in this sys-
tem. This allows the user to extend the functionality of Sirius by installing
more Eclipse plugins which could aid in model transformations or code
generation.20

Eclipse modeling framework. Sirius is not built directly on top of Eclipse,
EMF or the Eclipse modeling framework connects the two. EMF is used to

2https://www.eclipse.org/sirius/doc/developer/Architecture_Overview.
html

2

https://www.eclipse.org/sirius/doc/developer/Architecture_Overview.html
https://www.eclipse.org/sirius/doc/developer/Architecture_Overview.html


design the Ecore meta-models. Editors can be generated to edit stored data
textually and Sirius extends these capabilities by allowing to edit the data
within the diagrams themselves. The EMF layer is where model transforma-25

tions happen. One of such plugins is Viatra3.

Composition. At the highest level you can see how the Sirius tooling is split
from the runtime which interprets the models. This has the advantage of a
smaller package for the end users, which will not have any of the tools needed
to edit the underlying structure. The Sirius runtime is where the end-user30

can interact with the models.
This is not the only way Sirius separates its architecture. The core is also

split from any dialect specific extensions like diagrams or trees. This way,
more dialects can be developed by third parties just by accessing Sirius’
API.35

Another optimization happens when models are updated. Sirius uses a
refresh algorithm which is incremental and therefore only the changes are
propagated to the model, this results in them being available to be viewed
immediately.

Graphical modeling Framework. Sirius uses the GMF or Graphical modeling40

Framework notation and runtime. The internal model is computed from the
designed domain- and specification model. Then the Sirius internal diagram
model is used as the semantic model for the notation. GMF tooling was used
to initialize the GMF code to manipulate the internal Sirius diagram model.
However, currently the generated code and GMF tooling are no longer in45

use [5, 6].

3. Capabilities

Sirius supports five representations out of the box:

• Diagrams

• Sequence Diagrams50

• Tables

• Trees

3https://www.eclipse.org/viatra/

3

https://www.eclipse.org/viatra/


• Properties view

The difference with AToMPM is how Sirius has more than only diagrams.
Sirius allows having a combination of these representations in a single project.55

More specifically, multiple representations of the same type can be created to
show different aspects of the model. Users who want to create a completely
new representation have that option as well.

3.1. Diagrams
Diagrams are very versatile.60

Sirius has a vast amount of diagram options. I will therefore, cover the
most interesting options for the electrical use-case.

Figure 2: Example of a diagram in Sirius.4

Layers. Diagrams can have one or more layers which can be independently
shown or hidden. In these layers I can define a graphical representation which
will be mapped onto elements.65

4https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%
20Manual.html

4

https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html
https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html


Styling. Every aspect of the diagram can be styled. Styles can be conditional.
For example: weighted edges with a weight higher than 5 can be turned red.

Tools. I can also define tools which will be available to the user. These can
be used on the representation or be defined to happen on a specific event like
the reconnecting of an edge.70

Filters. Defining filters, which will hide or show elements matching specific
conditions is also possible. This gives the designer more choice than just
disabling whole layers of elements.

Validation. The model can be validated when required. Rules have to be set
before the validation can take place which is comparable to the way global75

rules are defined within AToMPM.
More options are available within the framework as it is meant to be able

to encompass any design compatible with the EMF core.

3.2. Tables

Figure 3: Example of an edition table in Sirius.5

5



Sirius allows to define tables. These tables create the option to edit the80

data within a compact overview which at times will be faster than fiddling
with a diagram. There are two types of tables within Sirius.

(1) The Edition Tables behave just like any old regular table would, the
column header mappings will be some (computed) attribute.

(2) The Cross Tables are a special kind of tables which are optimized to rep-85

resent relationships between elements. Both the columns and row head-
ers will represents elements with the corresponding cell checked when a
relationship between them exists.

3.3. Trees
Tree views are the hierarchical views you can see all throughout Sirius90

within its own editing windows. The items within these are created lazily
however they are not deleted implicitly.

3.4. Overview
Users familiar with Eclipse will recognize the layout of the Sirius work-

bench. As Sirius allows many views or representations of the same data.95

Consequently, editing the data in one view will propagate the change to all
other views. This allows the designer to open both views at the same time
and monitor whether the changes in one view have the desired effect on the
others.

Whenever the end-user manipulates the models, he does so in a simpler100

view. This view is the one the end user would get for a diagram. The canvas
in the center (orange) is where they would create and edit their model. The
palette (red) shows what they have at their disposal (the tools and elements
the creator defined). At the top in the menu (green) there are some general
options. The behavior when they add, delete or perform any other operation105

is also defined by the person who designed the model.

5https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%
20Manual.html

6https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%
20Manual.html

7https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%
20Manual.html

6

https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html
https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html
https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html
https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html
https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html
https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html


Figure 4: Example of a tree view in Sirius.6

Figure 5: The interface the end-user would see for diagram editing.7

7



4. Comparison

As Sirius is a graphical modeling tool it is best to compare it to other
tools in the same category. This is why I have chosen to compare it with
AToMPM. The distributed nature of AToMPM [7] versus the Eclipse110

based Sirius is hard to compare as both have their specific qualities.
Sirius has the advantage of a well established platform with a huge user

base. Extending Sirius’ functionality can be done by installing additional
Eclipse plugins or by creating new types of representations using the exposed
AP.. A different approach has been taken in AToMPM where extending115

functionality can be done by defining additional models.
When you know your way around the many properties and menus of

Sirius, it is quite easy to edit models in a fast way thanks to the table
representations while the singular diagram view can make this harder in
AToMPM.120

The way Sirius is designed makes it a little bit harder to get your first
model. This only applies when you do not have experience using the Eclipse
Runtime Configurations.

While the tools differ in the previously mentioned properties they both
make a distinction between abstract and concrete syntax. A lot happens125

behind the scenes in both tools, AToMPM will do the RAMification for you
and Sirius can automate other properties like layouts. So there is definitely
a level of automation in both tools. The quality of visual notation is highly
dependable on the user or creator of the models rather than relying solely on
the tool itself [1].130

5. Case study

For the case study a project consisting of multiple parts will be designed
and realized. This will include the creation of user friendly tools which will
provide any required operation on the model. These tools and models will
be designed with D. L. Moody his work on notations in mind [3].135

The reason for defining a visual rule language is so the user can have a
better grasp and overview of what is being done. This will also help users
who are not familiar with the Xtend language.

Applying the power of modeling to electrical systems. More specifically
home installations as they lend themselves to be modeled quite easily.140

8



Figure 6: A simple representation for an electrical wiring system.

9



Electrical installations consist of many connected components which could
all be modeled within Sirius. These include, but are not limited to: cables,
switches and outlets [2]. Sirius is the appropriate tool for the job because
of the ease of multiple representations. It is possible to have a view which
corresponds to the official notation and one which is more life-like. Tables145

can be used to summarize the system in question and view its properties
element-wise.

Guidelines, including the A.R.E.I [7], exist to validate whether a system
is up to specifications. Requirements could be collected from these standards
and implemented directly into the model checking utilities.150

Examples of possible things to check. There are many possible options
which can be checked for validity. I will give a non-exhaustive list of examples
to illustrate a few cases.

• Cable colors: certain cable colors are prohibited while others are re-
served for special applications only.155

• Short circuits.

• Allocated distribution points per wire.

• Fuse amperage.

The last part of the case study would involve model transformations
and/or code generation. I could create a simulator to simulate actions and160

reactions. Convert the system to a different formalism so it can be analyzed.
I could also convert it to different wiring systems (centralized, decentralized)
or perform cost optimization.

6. Application

The current meta-model, as seen in figure 7, is rather simple. This is165

because creating all the required validation and tooling needs to be done by
hand. The main classes in the meta-model are:

• Plan: holds the entirety of the electrical circuit.

• Wire: used to connect components.

7Imagefromhttp://riwatt.be/wp-content/uploads/2016/06/scheme1.jpg

10

Image from http://riwatt.be/wp-content/uploads/2016/06/scheme1.jpg


Figure 7: Ecore meta-model of the electrical installation.

11



• Component: a superclass encompassing any possible electrical compo-170

nents.

A model can be built using these three classes. To allow more options the
Component class is divided into six specialized classes. The current model

Figure 8: Items used for the examples which will be displayed as diagrams, trees and
tables.

already showcases many Eclipse modeling framework and Sirius features.
The ability to create, validate, filter and define tools for each instance of the175

12



meta-model is implemented. Examples for diagrams, trees and tables are
shown in figures 9, 10, 12 and 11. Not only are all CRUD operations for
each class defined, but any error which does not pass validation is given an
appropriate action which will automatically fix mistakes. When an operation
is too hard to implement using the AQL language Sirius uses for accessing180

model information, plain Java can be used. Figure 13 showcases the use
of Java services for harder operations. A lot more can be achieved and

Figure 9: Electrical plan diagram representation.

Figure 10: A table containing an example of components and calculated attributes.

this model is just a proof of concept. Model transformation can be used to
create more complex and closer to real life version of the diagrams. The
transformations could be achieved by using another Eclipse plugin called185

Viatra. If the model needs to simulated GEMOC8 can be used.

8https://projects.eclipse.org/proposals/eclipse-gemoc-studio

13

https://projects.eclipse.org/proposals/eclipse-gemoc-studio


Figure 11: A tree-like view of the electrical plan.

Figure 12: A second table, this time for wires.

14



Figure 13: Example of Java based services.

15



7. Conclusion

In conclusion I can see how model driven engineering tools can be used
to graphically model complex systems. The ease of use and pace of creations
allows for rapid prototyping. I have explored some aspects of Sirius and190

can confirm that its application to domain specific problems is helpful. I
also have explored how Sirius can be used in the specific case of modeling
electrical systems by designing a prototype wiring system.

References

[1] Aib-Vincotte, . A.R.E.I Vincotte. URL: http://www.epc-platform.be/
files/arei-beknopt-vincotte.pdf.

[2] Decker, B.., 2014. The complete guide to wiring. sixth ed., Cool Springs
Press.

[3] Moody, D.L., 2009. The physics of notations: Toward a scientific basis for
constructing visual notations in software engineering. IEEE Transactions
on Software Engineering 35, 756–779.

[4] Obeo, . Sirius - The easiest way to get your own Modeling Tool. URL:
http://www.eclipse.org/sirius/.

[5] Porhel, M., a. Eclipse Community Forums: Sirius > Is Sirius based
on GMF? URL: https://www.eclipse.org/forums/index.php/t/
1070145/.

[6] Porhel, M., b. Sirius Documentation Architecture Overview<. URL:
https://www.eclipse.org/sirius/doc/developer/Architecture_
Overview.html.

[7] Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Mierlo, S.V.,
Ergin, H., . Atompm: A web-based modeling environment .

16

http://www.epc-platform.be/files/arei-beknopt-vincotte.pdf
http://www.epc-platform.be/files/arei-beknopt-vincotte.pdf
http://www.eclipse.org/sirius/
https://www.eclipse.org/forums/index.php/t/1070145/
https://www.eclipse.org/forums/index.php/t/1070145/
https://www.eclipse.org/sirius/doc/developer/Architecture_Overview.html
https://www.eclipse.org/sirius/doc/developer/Architecture_Overview.html

	Introduction
	Architecture
	Capabilities
	Diagrams
	Tables
	Trees
	Overview

	Comparison
	Case study
	Application
	Conclusion

