
DSL for the simulation of evacuation plans with Xtext

Schoofs Ebert1

ebert.schoofs@student.uantwerpen.be

University of Antwerpa

aPrinsstraat 13, B-2000 Antwerp, Belgium

Abstract

In this paper we will discuss a new Domain Specific Language, Bmod, made for

the modeling of a floorplan, and it’s occupants behavior in case of an emergency.

Bmod was made possible thanks to the Xtext framework, a framework made by

the Eclipse Foundation.

Keywords: DSL, Bmod, Xtext, MDE

1. Introduction

The creation of models can best be left to domain experts, but we cannot

assume that they have all the skills needed to develop a simulation tool from

scratch. This is were Domain Specific Languages (DSL) come in handy. A DSL

is a language offering expressive power focused on a particular problem domain.5

[1]. It thus makes it possible for domain experts to focus on their domain.

One of the frameworks for the development of DSL’s is Xtext from the

Eclipse Foundation. This frameworks allows us to easily create a parser for our

DSL, validate it according to the domain specific restrictions and translate it

to other languages. In this paper we will create a DSL, named Bmod, which10

allows modeling of a floor plan to simulate the behavior of occupants in case of

a fire without proper programming knowledge.

In section 2 we will describe the design of Bmod. We will take a look at how

120161650

Preprint submitted to Model Driven Engineering January 6, 2020



it’s implemented using Xtext in section 3, and finally, in the last section we will

compare Bmod with MetaDepth, a framework for deep meta-modelling.15

2. Bmod

As stated in the introduction Bmod is a DSL for the modeling and simulation

of a floor plan in case of a fire. It is a simple language meant to be understand-

able and easy to create for non-programmers. In combination with Eclipse, it

provides auto-complete and rigorous validation and automatic translation to20

Java.

In this section we will go over the design of the Bmod language, how a

model can be constructed and we will elaborate on some design decisions. If

some things are still not completely clear after reading through it, don’t worry.

If you use Bmod in combination with Eclipse, the IDE will help you write the25

model through auto-complete and give warnings and errors if there are design

errors.

2.1. Core Concepts

A Bmod file, ends with the extension .bmod and consists of one mandatory

part, the model, and one optional part, the output options of the simulation.30

The model defines the floor plan, the persons in it and the emergency signs.

Every model needs it’s own file.

2.2. Model

The model in it’s most simple form looks as follows:

FloorPlan Name35

{

Feature Name

{

...

}40

...

}

2



Inside the FloorPlan we will define how the FloorPlan looks like, and every

person in it. A feature can be a Cell, Room, Door, Person, EmergencySign or

Fire. Fire is the only feature which can only be once in the FloorPlan.45

Cells are really the core of our FloorPlan, everything is build around them.

2.2.1. Cell

A cell is identified by it’s name, and has an positive x- and y-coordinate.

Cell c00

{50

x : 0

y : 0

}

2.2.2. Room

Cell’s can be combined to form a room, which is also identified through it’s55

name.

Room r1

{

cells : [c00 , c01 , c10 , c11]

max occupancy : 260

}

max occupancy is an optional parameter of a room. During the simulation,

each time cycle there will be a check how many persons there are in the same

room. If a room has more persons than, or equal to it’s maximum occupancy,

this is reported in the output.65

2.2.3. Door

In Bmod, there are two kinds of doors; normal doors and emergency doors.

A normal door connects two cells of two different rooms, to connect the rooms.

On the other hand an emergency door only has one cell. If a person reaches an

emergency door, they can exit the building and are saved.70

Door normal_door

3



{

cells : [c00 , c01]

}

Door emergency_door75

{

cell : c00

}

2.2.4. EmergencySign

Like in real buildings, there is a need for emergency signs to find our way80

through the rooms to an emergency exit.

EmergencySign es

{

from : d0

to : d185

}

from and to should be the identifier of a door. The validation of emergency signs

is one of the places where the custom validation of Bmod shows its strengths.

If a chain of emergency signs doesn’t lead to an emergency exit, a warning will

be thrown, the same happens if there are two conflicting signs; i.e. a sign with90

the same doors but in the opposite direction.

2.2.5. Person

The whole goal of Bmod is to study the movement of persons in case of a

fire, so naturally we also need to define persons with different perception and

action profiles.95

Person Hans

{

action : experienced

perception : listener

cell : c32100

}

There are three different action profiles, and four perception profiles. Let’s first

4



take a look at the action profiles, they dictate the movement of a person once

it has detected a fire.

• experienced105

Will go to the door if there is only one door in the room he is in.

If this person has crossed a door, and in the new room is an emergency

sign following this door, he will go to the next door this sign dictates.

Otherwise, he will choose a random sign to follow.

• newcomer110

Moves to the closest person in the room

If there are no persons in the same room, he moves to the closest door to

find someone in another room.

• panic

Moves to a random cell.115

Note: If a newcomer moves to another room, and there is also no one there, he

will keep switching between both rooms till he finds someone.

A person only moves if he has detected a fire. How a person detects there is

a fire is defined by the perception profile.

• nervous120

Detects a fire once the simulation starts.

• listener

Detects a fire once someone else in the same room has detected a fire.

• smeller

Detects a fire if it has spread to the same room the person is in.125

• observer

Detects a fire if it has spread to a cell neighboring its cell.

5



2.2.6. Fire

Fire is the only feature which can only be present once in the model and

thus is the only feature which doesn’t need a name. It describes the cells which130

are on fire at the start of the simulation. If we want the fire to start on different

locations, we simply add more cells.

Fire

{

cells : [c01 ,c44]135

}

During the simulation, fire will spread to neighboring cells in the same room,

or spread to another room through doors.

2.3. Options

The output options can be defined as follows:140

Options

{

File : outputfile.txt

Output : [human|parse]

Silent145

}

Each option is optional, and can thus be omitted and the order is interchange-

able. File writes the output of the simulation to outputfile.txt. If there is

no output file defined, the simulation will be printed to the console.

The Output option defines the style of the output; human writes the output150

in easy to understand sentences whereas parse creates lines which are easy to

parse:

TIME| EVENT: EVENT DETAILS

Finally, Silent disables the output of the simulation, except if dangerous con-

ditions are met and the final results of the simulations.155

2.4. Simulation

If there is a valid Bmod file in the project, two .java files will be generated

in the src-gen folder of the project. One FloorPlan.java file per project, and

6



one Simulate*.java file per model (i.e. .bmod file).

The FloorPlan.java file defines all the classes and functions needed for the160

simulation, and the Simulate*.java file initializes the simulation for a specific

model/configuration. The simulation can be run by running the Simulate*.java

file.

How those files are generated, and how the Bmod models are validated is

explained in the next section.165

3. Development of Bmod with Xtext

Bmod was created through the creation of only three files, Bmod.xtext,

BmodValidator.java and BmodGenerator.xtend. A fourth file tests the val-

idator and parser; BmodParsingTest.xtend. Everything else does Xtext for

you!170

3.1. The Grammar Language

The first step to create our DSL is to describe the concrete syntax using

Xtext’s grammar language. The grammar language is, on its turn, also a DSL

created using Xtext. In this case, our concrete syntax is defined in Bmod.xtext.

In the background, Xtext leverages the ANTLR parser, which is an LL(*)175

parser.

When Xtext parser our .bmod files, it uses the Eclipse Modeling Framework

(EMF) models as the in-memory representation of the parsed text files. Our

model is thus translated to an abstract syntax tree (AST). A meta-model of

this AST is also defined in a language called Ecore. Ecore is defined in its self,180

and is thus its own meta model (meta-circularity).

3.2. Validator

Xtext automatically validates the syntax of our DSL. But it also makes it

easy to write our own custom validation rules that are specific to our domain.

7



This makes it possible to, by example issue an error once the model is saved,185

but not all cells, or rooms are connected. This increases the user-friendliness of

Bmod, because it makes it almost impossible to create an inaccurate model.

3.2.1. Custom Validation Tests

To test those custom validation rules, Xtext makes it possible to define an

.xtend file. In this file, you can define unit tests for your validation rules. We190

can feed it a model, and assert a certain warning or error is given.

This allows us to be sure that our validation rules work as expected.

3.3. Generator

Now that we have defined our grammar, and our custom validation rules,

it’s time to put our DSL to action. Xtext provides us with an .xtend file which195

is run each time our DSL is saved. This makes it possible to, either run our

simulation, or, as is the case with Bmod, translate it to another language, in

our case Java.

Bmod is translated to Java, because, on the one hand, it makes it possible

to inspect the code, and study how the simulation works.200

On the other hand, this makes it possible to build a program around the gen-

erated code of Bmod, and extend upon it. By example, it could be possible to

make an graphical user interface on top of it, if that’s needed.

4. Comparison with metaDepth

metaDepth is a framework for deep meta-modeling created by Juan de Lara205

and Esther Guerra. [2] While metaDepth, and Xtext could both be used to

define a meta-model or concrete syntax of a DSL, Xtext goes way further.

Xtext makes it possible to easily create a custom validator, code generator,

linker and even include existing Java concepts.

While in the case of Bmod, implementation via metaDepth or Xtext has,210

at it’s core the same result; a grammar to define a model, and the possibility

8



to run a simulation of this model, it isn’t that difficult to come up with a case

where metaDepth wouldn’t suffice.

A LaTeX-like language model could be constructed through metaDepth, but

the real implementation of the language would only be possible with Xtext, or215

similar frameworks.

5. Conclusion

In this paper, we introduced the concept of a DSL for the modeling of a

floorplan, and simulate the behavior of occupants in the case of an emergency.

Furthermore, we briefly discussed how Xtext made it possible to easily create a220

powerful DSL.

References

[1] K. Czarnecki, Overview of generative software development, UPP ’04 (2004)

326–341.

[2] J. de Lara, E. Guerra, Deep meta-modelling with metadepth, TOOLS Eu-225

rope (2010) 1–20.

9


	Introduction
	Bmod
	Core Concepts
	Model
	Cell
	Room
	Door
	EmergencySign
	Person
	Fire

	Options
	Simulation

	Development of Bmod with Xtext
	The Grammar Language
	Validator
	Custom Validation Tests

	Generator

	Comparison with metaDepth
	Conclusion

