
Design and Implementation of a Domain-specific

Language for Modelling Evacuation Scenarios Using

Eclipse EMG/GMF Tool

Heerok Banerjee

Dept. Of Mathematics & Computer Science
University of Antwerp

Abstract

Domain-specific languages (DSLs) play a crucial role in resolving internal de-
pendencies across enterprises and boosts their upfront business management
processes. Yet, a lot of development is needed to build modelling frameworks
which support graphical interfaces (canvas, pallettes etc.), hierarchical struc-
tures and easy implementation to shorten the gap for novice users. In this
paper, a DSL namely, Bmod is introduced, which can be used to model evac-
uation scenarios. The language is built using Eclipse Modelling Framework
(EMF) and Eclipse Graphical Modelling Framework (GMF). Furthermore, a
comparison is also shown between Eclipse EMF/GMF and other modelling
tools such as AToMPM, metaDepth, Sirius etc with respect to expressiveness,
learning curve and performance.

Keywords: DSL, MDE, EMF/GMF, Eclipse EMF, Ecore

1. Introduction1

Contemporary business enterprises and Small and Medium-sized Enter-2

prises (SMEs) face a common challenge in terms of empowering human re-3

sources to adapt with the current trends in software modelling and devel-4

opment. Although, the responsibility of building the core software compo-5

nents in an end-product is to be beared by software developers, but domain6

Email address: Heerok.Banerjee@student.uantwerpen.be (Heerok Banerjee)

Preprint submitted to University of Antwerp January 8, 2020

experts can elude some of the complexities in the modelling process. Meta-7

modelling and particularly, domain-specific modelling have gradually reduced8

the cognitive gap between application developers and engineers. Firstly, the9

huge burden to translate application code into human readable requirements10

adds a massive delay in the overall engineering process. Secondly, it is quite11

challenging to design and develop DSLs that translates business/application12

requirements into their intended software requirements. As such, a DSL13

is a solution which can allow domain experts to build meta-models as ex-14

portable models and later on, software developers can implement the soft-15

ware requirements on top of these models. Therefore, a key requirement in16

software-driven industries is to build generalized modelling tools and help17

domain experts accompany the modelling process to yield domain models as18

per their business requirements.19

In this paper, an overview of the Eclipse Modelling Framework (EMF)20

and Graphical Modelling Framework (GMF) is presented. The paper con-21

templates on the key features of these modelling frameworks and captures22

the essence for employing these tools. Furthermore, a DSL namely Bmod [see23

Appendix A], which targets to represent evacuation scenarios is built from24

scratch using Eclipse EMF/GMF tools. The paper provides a walkthrough25

of the entire language engineering process remarking on some of the key fea-26

tures of EMF/GMF. A comparison is also drawn between EMF/GMF with27

contemporary modelling tools like AToMPM, metaDepth,Sirius in terms of28

performance and usability.29

2. Related Work30

DSL engineering has become a pervasive task across industries. Recent31

literature suggests that building graphical tools with user-friendly UI is also32

a growing demand. In this section, we will discuss the existing literature and33

some traditional and recent contributions made in extending the paradigm34

of domain-specific modelling.35

In [1], Gronback introduced the fundamental aspects to domain-specific36

modelling, using Eclipse modelling frameworks such as EMF and GMF. To37

summarize, his work depicted the chronology of developing DSLs [Fig. 1]38

and further illustrated the use of DSLs to accurately deliver domain-specific39

semantics. Furthermore, Gronback explained model-to-model transforma-40

tions explicitly using model mappings and refactoring, but did not cover41

ATL transformations.42

2

With the recent development of powerful frameworks and IDEs, DSLs43

have been largely democratized across industries. For example, in [2], a44

language was designed which captured ontological relations and created a45

conceptual model of relational databases from such ontologies. In [3], the46

authors introduced a plugin namely extremo to assist meta-modelling and47

modelling processes based on extracting embedded information from hetero-48

geneous sources. In [4], Kolovos et. al demonstrated EuGENia, a tool to49

profile a domain model and generate the rest based on model and in-place50

transformations. However, this work seems obsolete now, since Eclipse IDE51

provides plugins and wizards to automate this process.52

In terms of code generation, a comparative analysis of Microsoft DSL tools53

and Eclipse EMF tools is conducted in [5]. The empirical results suggests54

Eclipse EMF tools to be more convenient and preferable than MS DSL tools.55

Especially, this paper identified that amateur users preferred MOFScript56

language as a template language to build code generators rather than DSL.57

Furthermore, In [6], a comparison between Eclipse EMF and MetaEdit+58

was demonstrated by implementing a simple logic gate simulation language59

with respect to performance only. Quite interestingly, the paper concluded60

MetaEdit+ to be equally powerful to Eclipse EMF in terms of delivering61

performance.62

Figure 1: Workflow of Eclipse EMF/GMF

3

3. Modelling with Eclipse EMF/GMF63

The Eclipse IDE provides modelling frameworks namely Eclipse Mod-64

elling Framework (EMF) and Graphical Modelling Framework (GMF) to65

customize model editors. These editor tools are installed as wizards and plu-66

gins, hence allowing users to integrate customized editors and further build67

or extend meta-models/models of a particular DSL. In this section, a quick68

overview of the Eclipse EMF platform is provided, which contemplates on the69

basic prerequisites before building a DSL. In particular, some of the features70

of EMF/GMF frameworks are covered and a usecase pertaining to evacuation71

scenarios is presented.72

The preliminary task to designing any DSL is to design and formulate73

the abstract syntax of the desired language. For this step, we essentially74

build the meta-model of our language denoting the features of the elements75

in our language. For example, in Bmod language, we declare the atomic76

elements such as floors,rooms,cells,people etc. along with their corresponding77

attributes and operations. Typically, this is denoted in the language of ’Class78

Diagrams’ in most modelling tools. However, Eclipse EMF/GMF describes79

the meta-model in Ecore.80

3.1. Ecore meta-modelling language81

The Eclipse Modeling Framework (EMF) includes a meta-model (Ecore)82

for describing models and runtime support for the models including change83

notification, persistence support and a very efficient reflective API for ma-84

nipulating EMF objects generically.85

As shown in Fig.2, Ecore meta-models depict a tree-based hierarchy struc-86

ture to denote the elements of the language. The meta-model is essentially87

constituted of EClasses which further holds instances of type EAttributes,88

EOperations and EReferences. One of the features of Eclipse EMF sup-89

ports autonomous transformations of Ecore models into class diagrams [see90

Appendix B]. These are typically stored as separate meta-models known as91

Ecore Diagrams. Additionally, Eclipse EMF supports storing multiple view92

models of the abstract syntax (either as class diagrams or tables), which is93

a handy tool to trace model versions and incremental changes. The above94

mentioned operations are click-based and does not require manual code.95

As discussed above, the Eclipse EMF platform provides two modelling for-96

malism namely the Ecore model and the Ecore Diagram model to describe97

4

(a) Abstract Syntax of Bmod (b) Attributes, Operations and References

Figure 2: Bmod meta-model in Ecore

the abstract syntax of our DSL. But the selection of either of these formal-98

ism is subject to different usecases and depends on the requirements of the99

language. As such, the Ecore meta-model provides more expressiveness in100

terms of properties and features. The Ecore meta-model allows distinctively101

to describe attribute types, their upper and lower bounds, default values and102

accessibility.Hence if the language is required to be acutely property-driven,103

the Ecore meta-model is preferable. On the other hand, the Ecore Diagram104

meta-model provides ways to express relationships and containments between105

different elements of the language. As a result, the Ecore meta-model domi-106

nates over Ecore diagram meta-models in terms of expressiveness.107

3.2. Code generation with Genmodel108

The succeeding step after modelling a language is to generate program109

code which can essentially capture and represent the semantics of the desired110

language. In Eclipse EMF, this is provided by the Genmodel wizard, which111

autonomously generates java code from an Ecore meta-model. The Genmodel112

wizard allows users to generate code for the domain model, the editor and113

test suites. These are discussed below:114

3.2.1. Generating Model Code115

The Genmodel wizard essentially generates java classes for each element116

in the Ecore meta-model. These java classes encapsulates the attributes117

and the operations, which define the operational semantics of the desired118

language. Software developers can then extend the generated code to define119

5

the operational semantics on top of these java classes, hence preserving the120

business requirements. In other words, domain experts yield the domain121

models on top of which operations are executed. And, software developers122

augment the operational semantics to these entities and describe how those123

operations are executed by means of code.124

package BmodModel;

import org.eclipse.emf.ecore.EObject;

public interface Cell extends EObject {

boolean isIsVisited();

void setIsFire(boolean value);

Cell getLeft();

void setLeft(Cell value);

{

//To write code

}

Cell getRight();

........

........

void getPerson();

} // Cell

The above snippet code gives an overview of the generated java code.125

Essentially, the code generator adds getter and setter functions for each at-126

tribute, along with providing inline documentation of the generated func-127

tions.128

3.2.2. Generating Model Editor Code129

After generating all the model artifacts using the Genmodel, the succeed-130

ing step is to build the model editor as a plugin. This can be achieved by131

simply running another eclipse instance with the auto-generated build con-132

figuration for the editor bundle. Users can then select the generated Bmod133

model editor as a seperate wizard to create/extend samples models of the134

Bmod language.135

The Eclipse GMF provides a secondary package EMF forms which allows136

to build and customize view models for Ecore models. A view model essen-137

tially models the graphical UI, which is the underlying interface used to mod-138

ify model attributes and create/delete associations. The EMF forms package139

6

additionally automates the UI modelling process by providing generic layouts140

for each element, such that even non-experts can quickly learn to customize141

these layouts. The view models are also embedded within the model editor.142

Additionally, the generated model editor provides UI implementation on top143

of these customized view models. Hence, the basic CRUD operations and144

manipulation of sample models becomes more convenient.145

(a) View model for element Room

(b) View model for element Cell

Figure 3: Customized view models

3.2.3. Generating Diagram Editor Code146

The Eclipse EMF/GMF tool provide plugin support to build customized147

graphical and model editors. The model editor can be comfortably generated148

using the GMF dashboard. After building the Ecore meta-model of the DSL,149

users can derive the generator model using the dashboard.150

7

Figure 4: Eclipse GMF Dashboard

Fig. 4 illustrates the GMF dashboard. As observed in the figure, the only151

pre-requisite artifact required to generate diagram editors and model editors152

is the domain model. The domain model is built employing Ecore meta-153

modelling language, which can be easily built by domain experts. Since,154

the succeeding steps are derived solely from the domain model, the entire155

code generation process becomes autonomous relieving domain-experts from156

acquiring additional skills and workload. Based on the generated editors,157

software developers can consequently model the software requirements and158

add necessary implementation code to achieve the desired semantics of the159

language.160

4. Implementation of Bmod using EMF/GMF161

In this section, a chronological summary of the entire project is discussed162

including anecdotal remarks and technical difficulties faced while modelling163

the Bmod language.164

4.1. Defining Abstract Visual Syntax165

The abstract visual syntax defines the declarative elements of a language.166

As such for our desired language Bmod, we have used the Ecore Diagram167

Editor to define the language elements. As shown in Fig.2 and Fig.5, the168

ecore model depicts the atomic elements of our DSL such as Floors, Rooms,169

Cells, Door People, Emergency Signs and Walls.170

8

Figure 5: Abstract Visual Syntax of Bmod

4.2. Defining Concrete Visual Syntax171

The concrete visual syntax defines the visual representation of each ele-172

ment of our DSL. The Genmodel wizard generates the edit code that auto-173

matically maps every icons for every declared element including references,174

associations and classes. The generated code is stored as a separate bundle175

in the Eclipse IDE and users can modify icons directly from the directory.176

As such, for defining the concrete syntax for Bmod, images were exported177

as gifs and later on replaced with the existing icons. However, in terms178

of expressiveness, Eclipse GMF does provide extensive graphical definition179

tools which support complex polygon structures, floating texts and embed-180

ded shapes and figures. Alternatively, an easy and comfortable approach181

is to derive this functionality from the Genmodel wizard, hence refraining182

domain-experts to indulge with these sophisticated tools.183

Figure 6: Overview of Concrete Visual Syntax of Bmod

9

4.3. Creating Sample Models of Bmod184

Employing the generated model editors and diagram plugins, sample185

models can be built from scratch. These operations are mostly click-and-186

drag operations and does not require any manual coding. Fig. 3 illustrates187

some samples models generated using the model editor wizard.188

Figure 7: Bmod Diagram model

Fig. 7 illustrates a sample model built using the generated diagram edi-189

tor. In terms of expressiveness, we observe that the model fails to capture the190

essence of containments and associations. Due to limited time and the inher-191

ent complexity, especially while defining the diagram definition, the model192

does not represent references. Although, it is difficult to represent links be-193

tween elements as a novice user, associations can indeed be represented in194

model diagrams. However, examples and online resources positively indicate195

that it is difficult to represent containment relationships in [7].196

5. Comparative Analysis197

In this section, a comparison of Eclipse EMF/GMF tool is presented with198

some of the state-of-the-art modelling tools. As such, the comparisons will199

10

be strictly inclined towards Eclipse EMF/GMF and AToMPM 1.200

Table 1: Comparison of different MDE tools

MDE Tool
Domain
Model

Code
Generation

Model
Transformation

Eclipse EMF/GMF Ecore models
Genmodel

(fully autonomous)
ATL

AToMPM Class Diagrams Manual Rule-based, MoTIF

Eclipse Sirius Ecore (Diagram) Genmodel Acceleo/ ATL

Eclipse Graphiti Ecore (Diagram) Underlying EMF/GMF Not supported

XText Textual XTend
ATL (via exporting

models)

metaDepth Textual Not Supported ETL/Epsilon

Table 1 gives an overview of the underlying meta-models, code genera-201

tors and model transformation languages for the aforementioned tools. With202

respect to code generation, Eclipse EMF/GMF dominates over other tools203

since the primary focus of EMF/GMF is to reduce the effort in code gener-204

ation. The Genmodel wizard is much more convenient to use as compared205

to AToMPM. AToMPM currently requires manual code intervention, specif-206

ically transforming meta-models into sourceTree models before generating207

python code. This would require some trivial effort, if any, to further cus-208

tomize the generated code such as adding annotations, inline comments and209

additional implementation code.210

In terms of model transformation, AToMPM is much more convenient211

since it support visual rule-based transformations. Firstly, Eclipse EMF/GMF212

does not support endogenous model-to-model transformations whereas AToMPM213

supports both endogenous and exogenous transformation. Secondly, the214

transformation language used in Eclipse EMF/GMF is ATLAS (ATL), which215

is purely text-based and requires some additional effort to learn before ap-216

plying practically. On the other hand, AToMPM delivers an easy and much217

comprehensible visual editor to create pattern/rule-based transformations.218

1Other MDE tools are neglected due to lack of practical experience in these tools

11

Additionally, the underlying MoTif scheduling language helps to incorporate219

the operational semantics of a DSL.220

Table 2: Comparison of different model features

MDE Tool
Model Features

Expresiveness Navigability Hierarchy Refactoring

Eclipse EMF/GMF High High
√ √

AToMPM High Low
√

×
Eclipse Sirius High High

√ √

Eclipse Graphiti High Low ×
√

XText Low Low
√ √

metaDepth Low Low
√ √

Table 2 compares some of the features of sample models with respect221

to visualization and delivery of the intended semantics. In terms of expres-222

siveness and representation, although Ecore models dominate as opposed to223

traditional class diagrams, the visual representation in AToMPM is much224

convincing than that of Eclipse EMF/GMF. However in terms of data mod-225

elling, Eclipse EMF/GMF is slightly better, as it provides tree-based hi-226

erarchical structures along with easy create/delete/modify functionalities.227

Additionally, customized model editors along with automated UI makes it228

more convenient to navigate and modify the sample models.229

6. Conclusion230

In this paper, a brief summary of domain-specific modelling usecase is231

exemplified by implementing a DSL for modelling evacuation scenarios. The232

paper discussed key features of Eclipse EMF/GMF such as automated code233

generator and GMF dashboard to ease the efforts in domain-specific mod-234

elling. Furthermore, the paper presented anecdotal remarks on the tool and235

compared its performance and usability with other contemporary modelling236

tools. Clearly, ATomPM is a much more user-friendly tool as compared to237

Eclipse EMG/GMF to model and integrate operational semantics of a DSL,238

but, it lacks support for automated code generation. Nevertheless, Eclipse239

EMF/GMF is a powerful modelling framework focusing on code generation240

and customized model/graphical editors, yet it is considerable to augment241

more features.242

12

References243

[1] Richard C Gronback. Eclipse modeling project: a domain-specific lan-244

guage (DSL) toolkit. Pearson Education, 2009.245

[2] Morad Hajji, Mohammed Qbadou, and Khalifa Mansouri. “Onto2DB:246

towards an eclipse plugin for automated database design from an on-247

tology.” In: International Journal of Electrical & Computer Engineering248

(2088-8708) 9 (2019).249

[3] Ángel Mora Segura and Juan de Lara. “Extremo: An Eclipse plugin250

for modelling and meta-modelling assistance”. In: Science of Computer251

Programming 180 (2019), pp. 71–80.252

[4] Dimitrios S Kolovos et al. “Taming EMF and GMF using model trans-253

formation”. In: International Conference on Model Driven Engineering254

Languages and Systems. Springer. 2010, pp. 211–225.255

[5] Vicente Pelechano et al. “Building Tools for Model Driven Development.256

Comparing Microsoft DSL Tools and Eclipse Modeling Plug-ins.” In:257

DSDM. 2006.258

[6] Steven Kelly. “Comparison of Eclipse EMF/GEF and MetaEdit+ for259

DSM”. In: 19th annual ACM conference on object-oriented program-260

ming, systems, languages, and applications, workshop on best practices261

for model driven software development. 2004.262

[7] Enrico Biermann et al. “Graphical definition of in-place transforma-263

tions in the eclipse modeling framework”. In: International Conference264

on Model Driven Engineering Languages and Systems. Springer. 2006,265

pp. 425–439.266

Appendix A. Description of Bmod DSL267

This section describes the set of elements that constitute the Bmod lan-268

guage and their corresponding semantics. The primary use case of Bmod269

language is to build models that create evacuation scenarios and operate on270

these models to analyse behaviour of participants, detect alarming events271

and perform safety analysis of floor plans.272

• A Floor is one of the elements of Bmod language, which is hierarchically273

above every other element. An instance of floor denotes a regular floor274

of a building.275

13

• A Room denotes a finite space, which encapsulates a set of cells, doors,276

people and an emergency situation (In this case, we assume its only277

fire).278

• People denote instances of humans that are present in a room. People279

have a perception and an action profile while influence their navigation280

during the evacuation scenario. People are either alive or killed by fire.281

• A Door denotes a gateway from one room to another. It encapsulates282

a hypothetical path between one source room and a destination room.283

A door is exists as either locked or open. An open door allows people284

to transport from one room to another.285

• A Cell denotes a navigational element, which is used by people to escape286

during the evacuation event. Every cell is connected to one cell in all the287

four directions. A cell accommodates people, emergency signs, doors288

and fire. Essentially, a set of cells constitutes a room.289

• A Wall denotes an obstruction. A wall obstructs people and fire to290

transport to other cells. Walls are essentially derived from cells, but291

they are not connected to any other cells in all four directions.292

• A EMSign denotes an emergency sign that guides people to the exit.293

A set of emSign denotes a evacuation path, which can be used by the294

people to escape.295

• CellNavigationManager denotes an abstract class which helps to obtain296

navigational information. This will be required while simulating an297

evacuation scenario, where people would move from one cell to another.298

• SimulationManager denotes another abstract class that represents the299

simulation state of the scenario. This class contains variables denoting300

time, validation attributes and operations to pause/resume simulation.301

Appendix B. Representations of Ecore models302

The Eclipse EMF tool allows users to create multiple view representations303

of the base Ecore model. As shown in Fig. B.8, the Ecore model can be304

viewed either as a class diagram or as a spreadsheet. Additionally, multiple305

instances of the Ecore model can be stored. This is a useful feature to trace306

model updates and versions throughout the SDLC lifecycle.307

14

(a) Class diagram representation

(b) Spreadsheet representation

Figure B.8: Different view representations

15

	Introduction
	Related Work
	Modelling with Eclipse EMF/GMF
	Ecore meta-modelling language
	Code generation with Genmodel
	Generating Model Code
	Generating Model Editor Code
	Generating Diagram Editor Code

	Implementation of Bmod using EMF/GMF
	Defining Abstract Visual Syntax
	Defining Concrete Visual Syntax
	Creating Sample Models of Bmod

	Comparative Analysis
	Conclusion
	Description of Bmod DSL
	Representations of Ecore models

