
BMOD Implementation Using Sirius

Sylvain Elias

University of Antwerp, Middelheimlaan 1, Antwerp

Sylvain.Elias@student.uantwerpen.be

Abstract

Sirius is a technology that allows users to create custom graphical modeling
workbenches that are composed of a set of Eclipse editors (diagrams, tables
and trees) therefore it allows the users to create, edit and visualize EMF
models that are based on a structured data model. BMOD is a Domain
Specific Language implemented using Sirius, it is used to simulate building
evacuation during an emergency.

Keywords: Domain Specific Language, Model Driven engineering, Model,
Metamodel

1. Introduction1

Sirius is particularly adapted for users that have defined a DSL and need2

graphical representations to better elaborate and analyze a system. The3

Eclipse editors created with Sirius are described by a model, also known as4

metamodel, which defines the complete structure of the modeling workbench,5

its behavior and all the edition and navigation tools. This description of a6

Sirius modeling workbench is dynamically interpreted by a runtime within7

the Eclipse IDE.[1] In this report we’ll discuss the implementation of BMOD8

using Sirius and the limitations of this tool. We’ll start by defining BMOD in9

in 2 then we’ll talk about its implementation using Sirius in 3, we’ll compare10

it with other tools in 4 and then we’ll conclude in 511

2. BMOD12

BMOD should allow the user to design a floor that verifies the rules set13

by the metamodel, the user should be able to add rooms, divide them into14

Preprint submitted to MDE January 6, 2020



cells which can hold occupants, connect the rooms together using doors,15

place emergency exit signs, set the occupants’ perception (when they get16

alarmed by the existence of an emergency) and action (how they react after17

being alarmed) and check if a dangerous condition occurs (a room has more18

occupants than a preset number). The emergency we’ll be working on in this19

specific project is the existence of a fire in the floor. This DSL should be20

animated to show the user the propagation of the fire in the cells and how21

occupants react to it. The purpose of this language is to aid specialists in22

designing buildings that can be easily navigated during an emergency by the23

help of rightly placed emergency exit signs.24

3. Implementation25

3.1. Metamodel26

Sirius uses Ecore Tools which is a graphical editor for Ecore models to27

create metamodels for the DSL. Classes are represented as a Class Classifier28

in the palette and can be easily created by dropping them in the provided29

diagram, adding attributes to them and linking them to each other using30

different relations. The main relation between different classes is the Com-31

position relation which indicates that the class is composed of different classes32

and this is crucial for the visual syntax design explained in 3.233

• I started designing the BMOD metamodel by adding the Floor class34

which has no attributes, it is composed of Room, Outside and Door35

classes.36

• Outside is an empty class used to represent the safety area where oc-37

cupants are safe from the fire38

• Room is a class that has a name and condition as attributes, condition39

is used by the user to set the dangerous condition that needs to be40

checked. This class is composed of 1 EmergencySign and 1 or many41

Cell classes.42

• Door is an empty class that is connected to 2 Target classes43

• EmergencySign is an empty class that is connected to 1 source Door44

and 1 or 2 target Door, the source is used to specify which door this45

emergency sign is linked to which is important especially since a room46

can have multiple doors47

2



• Cell can be connected to 0 to 4 different Cell (left, right, top and48

bottom connections) and is composed of 0 or 1 Content class49

• Content is an abstract class, it is used as a super type for both Fire50

and Occupant classes. This abstract class is used to make connections51

between the cell and its content easier52

• Fire is an empty class, it’s only purpose is to be contained in a cell to53

indicate that it’s on fire54

• Occupant has three attributes: isAlarmed to indicate if this occupant is55

currently alarmed or not, perception which is linked to an perceptions56

enumeration class that enumerates the list of perceptions available and57

action which is also linked to a actions enumeration class. I didn’t add58

a isDead attribute since the cell can only have one content so we can’t59

add fire to a cell that has a dead occupant60

• Target is an abstract class that is the super type of both Cell and61

Outside class since they’re both targets to Door62

Figure 1: Image showing the final metamodel

3



3.2. Visual syntax63

The first step in designing a visual syntax in sirius is setting a viewpoint;64

a viewpoint provides a set of representations (diagrams, tables or trees) that65

the end user will be able to instantiate. For BMOD a diagram is added as66

a representation for this viewpoint which has the Floor class as its domain67

class so we can interpret and view all the classes that it is composed off. This68

diagram is made of multiple nodes representing the classes in the metamodel69

and the edges connecting them. If a class doesn’t have a node associated to70

it in a diagram it won’t be represented in the visual syntax71

1. Classes with no attributes or containment are simply represented by a72

node holding a workspace image like Fire, Door and EmergencySign.73

2. Occupant is represented by a node containing a workspace image but74

it also has a label which displays the perception and action attribute75

next to the image76

3. Room isn’t visualized using a normal node since it is a class that con-77

tains other classes, therefore I used a container node which, not only78

holds a workspace image that also displays the label, but it also holds79

all the classes that it is composed of. The main class Floor can only80

contain nodes that it is directly composed of so adding another con-81

tainer node helps in displaying all the classes.82

4. Cell is the same as Room, it is also a container node that holds Fire83

and Occupant84

5. Edges also have to be represented in the model so I added relation85

based edges in the viewpoint to every edge available in the metamodel86

that should be displayed in the model and set their source and target87

mappings depending on each one of them.88

In Sirius, adding the ability to edit the available model by adding new ele-89

ments has to be done separately so I added node creation tools (or container90

creation tools for the Cell and Room classes) to the viewpoint which create91

new instances of the element created and adds them to the model; the same92

thing is done for edge creation but one of the features that sirius has is the93

ability to set different actions to happen when a node is created so I used94

this feature to make double connections easy between cells (when a cell 1 is95

connected to the left to cell 2, cell 2 is automatically connected to the right96

to cell 1). Normal nodes can be easily deleted in the visual syntax model but97

edges need to have a delete element tool added to the viewpoint so I created98

4



them and when an edge gets deleted the nodes connected to them have to99

be noticed so an unset method is called to remove this selected edge from100

the class attached to it. I also added a double click function for the classes101

that have attributes to open a new dialog to allow for a better and easier102

editing of these attributes. Since the Occupant has two states: either they103

are alarmed or they aren’t, I added a style customization which changes the104

image used to display the occupant so that their current state can be easily105

viewed by the user.

Figure 2: Image showing a sample model created using the visual syntax

106

3.3. Constraints validation107

Sirius automatically shows when the metamodel constraints aren’t met108

when validating the model created (e.g. when a room that is supposed to have109

1 or more cells doesn’t have any) but extra constraints have to be added so I110

added validation tools to the viewpoint to verify that the model has no errors111

that aren’t mentioned in the metamodel (when all rooms aren’t connected112

together, when one door is used to connect two cells of the same room instead113

of two cells from different rooms, or if one of the emergency sign target door114

doesn’t have Outside between one of its targets). These constraints were115

implemented to call on java service functions which return a Boolean value116

to check if the constraint was validated or not. If not validated, Sirius shows117

a sign next the the element in the model with a message to make it clear for118

the user where the error came from and for what reason.119

5



3.4. Operational semantics120

Sirius as a tool by itself doesn’t present a way to add operational semantics121

to a model so the fire propagation and occupant movements couldn’t be122

modelled. It should be noted though that this functionality could be added123

by using external tools like GEMOC Studio which is an Eclipse product (on124

top of Sirius) but I didn’t implement it since it is out of the scope of this125

project Gemoc [2].126

4. Comparison with other tools127

4.1. AToMPM128

Sirius and AToMPM share the same metamodel creation technique but129

Sirius has the composition relation which bases the model creation on it130

while AToMPM doesn’t need this complexity. When it comes to visual syn-131

tax AToMPM allows model visualization and model creation and editing by132

simply creating a visual syntax for the classes presented in the metamodel133

while in Sirius it is more complex since different presentations have to be134

created for different kinds of classes and edges and node/edge creation and135

deletion have to be set up manually one by one. But on the other side Sirius136

also adds the functionality to add actions when new elements are added to137

the model which isn’t available in AToMPM. Also AToMPM makes it easy138

to snap elements together after being created in the model while Sirius has139

a feature called ELK which allows the user to edit the default arrange all140

function for the created model but it is still in its experimental phase and141

it caused my metamodel to crash when added to my project so I couldn’t142

test out its functionality. AToMPM offers the user the option to directly143

create operational semantics in an easy and visual way while you have to use144

external tools to implement these functionalities in Sirius.145

4.2. Metadepth146

Sirius is completely different than Metadepth since it has a visual pre-147

sentation for everything which makes it easier to create the metamodel and148

the model itself while Metadepth takes a different approach since it only has149

a textual syntax and everything should be coded instead of using drag and150

drop techniques and visual representation of the elements you’re editing151

6



5. Conclusion152

In conclusion, Sirius is a really strong tool and it has an easy learning153

curve, and with the addition of extra tools that it supports it could be really154

easy to build big projects using it. In general Sirius was easier to use than155

AToMPM since it is more intuitive than the latter but both these tools were156

simpler and felt more natural to use than Metadepth since they both have157

visual representations of the DSL you’re developing while having the same158

functionalities and even more.159

References160

[1] Eclipse, Sirius overview, https://www.eclipse.org/sirius/overview.html,161

2019.162

[2] Gemoc, Gemoc, http://gemoc.org/, 2019.163

7


