
Model-Driven Engineering Tools
Xtext and MPS

Bentley James Oakes
Bentley.Oakes@uantwerpen.be

University of Antwerp
Flanders Make



Table of Contents

1 Production System

2 Xtext
Meta-model and Model
Abstract and Concrete Syntaxes
Constraints
Model-to-Text Generation
Model-to-Model Transformation

3 Meta-Programming System (MPS)
Meta-model and Model
Abstract and Concrete Syntaxes
Constraints
Model-to-Text Generation
Model-to-Model Transformation

4 Conclusion

Bentley.Oakes@uantwerpen.be 2 / 37



Overview

This presentation will present examples of the ProductionSystem
language within two model-driven engineering tools: Xtext and MPS.
We’ll move through six topics when creating the ProductionSystem
language in each tool:

Meta-models and models

Abstract and concrete syntax

Constraints

Modularizing languages

Model-to-text generation

Model-to-model transformation (briefly)

Bentley.Oakes@uantwerpen.be 3 / 37



Outline

1 Production System

2 Xtext
Meta-model and Model
Abstract and Concrete Syntaxes
Constraints
Model-to-Text Generation
Model-to-Model Transformation

3 Meta-Programming System (MPS)
Meta-model and Model
Abstract and Concrete Syntaxes
Constraints
Model-to-Text Generation
Model-to-Model Transformation

4 Conclusion

Bentley.Oakes@uantwerpen.be 4 / 37



Production System Overview

Production systems are composed of Machines connected by Segments.
Items travel along these segments and are operated upon by different
machines operated by Operators. A Schedule language specifies the order
for operators to operate the machines in

Bentley.Oakes@uantwerpen.be 5 / 37



Outline

1 Production System

2 Xtext
Meta-model and Model
Abstract and Concrete Syntaxes
Constraints
Model-to-Text Generation
Model-to-Model Transformation

3 Meta-Programming System (MPS)
Meta-model and Model
Abstract and Concrete Syntaxes
Constraints
Model-to-Text Generation
Model-to-Model Transformation

4 Conclusion

Bentley.Oakes@uantwerpen.be 6 / 37



Xtext Intro

Xtext is a framework for development of programming languages
and domain-specific languages (DSLs). With Xtext you define
your language using a powerful grammar language. As a result
you get a full infrastructure, including parser, linker, typechecker,
compiler as well as editing support for Eclipse, any editor that
supports the Language Server Protocol and your favorite web
browser.

Website: https://www.eclipse.org/Xtext/

Bentley.Oakes@uantwerpen.be 7 / 37

https://www.eclipse.org/Xtext/


Xtext Structure

Top: A DSL is created by defining a grammar on the top level

Xtext then generates plugin code to define an editor (parser,
generation code, etc.)

Bottom: This plugin runs in another instance of Eclipse

The user can then write their models in this custom editor
Bentley.Oakes@uantwerpen.be 8 / 37



Meta-model Example

Meta-model:

This grammar defines the abstract and concrete syntax for a cylinder
assembler
Model:

This text is in the Production System editor, and defines a CylAssembler
instance.

Bentley.Oakes@uantwerpen.be 9 / 37



Grammars

The DSL meta-model is specified in Xtext using a textual grammar.

The rules (generally) follow Extended Backus-Naur Form (EBNF).

These rules define options for taking characters and producing data
structures (the process of parsing).

The model file is then parsed using this grammar to build the
Abstract Syntax Tree (AST).

Bentley.Oakes@uantwerpen.be 10 / 37



Production System Grammar

This is the definition of a rule CylAssembler and a fragment
Blue literals are the literal characters to find
name=ID means that the attribute name is given a value by the
token that matches the built-in rule ID

Square braces are references, * is zero-or-more, ? is optional
Bentley.Oakes@uantwerpen.be 11 / 37



Abstract and Concrete Syntax

This grammar defines both the abstract and concrete syntax of the
language

Can define white-space aware languages (like Python) too

Bentley.Oakes@uantwerpen.be 12 / 37



Pitfall: Dealing with Grammars

Grammars are tricky to construct, very leaky abstraction

Have to learn syntax and then carefully predict how parsing will
happen

Issue: Ambiguous grammars

Left recursion - Example: Term: Term + Op

Difficult to debug:
Decision can match input such as "RULE ID" using multiple

alternatives: 1, 2

As a result, alternative(s) 2 were disabled for that input

Reason: Operator and another rule only had name=ID

Bentley.Oakes@uantwerpen.be 13 / 37



Importing Languages

Here, the Schedule language refers to an Operator from the Production
System language

In the Schedule model:

Can refer to any Operator in ProductionSystem models in the same
folder (automatically)

Trick: Must add referencedResource in GenerateSchedExample.mwe2

Bentley.Oakes@uantwerpen.be 14 / 37



Editor Features

From the grammar, Xtext is able to do:

Auto-complete

Text and references
Can customize the scope

Custom warnings and errors

Bentley.Oakes@uantwerpen.be 15 / 37



Ecore Metamodel

Xtext also automatically generates an Ecore metamodel file (*.ecore)

Visualized using Ecore Diagram
Editor plugin

Bentley.Oakes@uantwerpen.be 16 / 37



Constraints

Arbitrary Java code written in the
ProductionSystemValidator.java file

Constraints validated while written code or on button press

Bentley.Oakes@uantwerpen.be 17 / 37



Model-to-Text Generation

Template-based code (or string concatenation) written in the
ProductionSystemGenerator.xtend file

Generates DOT code for generating a graph

Bentley.Oakes@uantwerpen.be 18 / 37



Model-to-Model Transformation (ATL)

Can write Atlas Transformation Language (ATL) rules to transform
a model

Uses .ecore files as metamodel and .xmi files as model

Also see Epsilon - https://www.eclipse.org/epsilon/

Bentley.Oakes@uantwerpen.be 19 / 37

https://www.eclipse.org/epsilon/


Conclusion

Pros:

Xtext is easy way to build up a language, editor, generator...

Integrates well with Eclipse ecosystem

Provides metamodel and models in plain files or Ecore files

Cons:

Have to become familiar with parsing

Very difficult to understand how to achieve something

Lack of documentation, support is from 2-3 people on forums

Tutorials:

https://www.eclipse.org/Xtext/documentation/102_

domainmodelwalkthrough.html

http://www.cs.ru.nl/J.Hooman/DSL/Creating_a_Domain_

Specific_Language_(DSL)_with_Xtext.pdf

Bentley.Oakes@uantwerpen.be 20 / 37

https://www.eclipse.org/Xtext/documentation/102_domainmodelwalkthrough.html
https://www.eclipse.org/Xtext/documentation/102_domainmodelwalkthrough.html
http://www.cs.ru.nl/J.Hooman/DSL/Creating_a_Domain_Specific_Language_(DSL)_with_Xtext.pdf
http://www.cs.ru.nl/J.Hooman/DSL/Creating_a_Domain_Specific_Language_(DSL)_with_Xtext.pdf


Outline

1 Production System

2 Xtext
Meta-model and Model
Abstract and Concrete Syntaxes
Constraints
Model-to-Text Generation
Model-to-Model Transformation

3 Meta-Programming System (MPS)
Meta-model and Model
Abstract and Concrete Syntaxes
Constraints
Model-to-Text Generation
Model-to-Model Transformation

4 Conclusion

Bentley.Oakes@uantwerpen.be 21 / 37



MPS Intro

The Meta-Programming System (MPS) is a language workbench
to design domain-specific languages (DSLs). It uses projectional
editing which allows users to overcome the limits of language
parsers, and build DSL editors such as ones with tables and dia-
grams.

Website: http://www.jetbrains.com/mps/

Bentley.Oakes@uantwerpen.be 22 / 37

http://www.jetbrains.com/mps/


MPS Structure

MPS is very explicit about DSLs

DSLs are defined in languages (the orange L in the figure) - the
meta-model

Multiple DSLs are then used in solutions (the purple S) - the
models

Bentley.Oakes@uantwerpen.be 23 / 37



Aspects

A unique feature of MPS is that the user defines aspects for each
concept:

Structure - The abstract syntax

Editor - Definition of concrete syntax

Constraints - Constraints on attributes and references

Behavior - Java-like utility code, concept constructor

Typesystem - Define typign rules (eg. MyString is a String)

textGen - Simple text generation

And a few more...

Bentley.Oakes@uantwerpen.be 24 / 37



Structure Example

Language:

The structure aspect defines the abstract syntax for an inspection
machine
Model:

This defines an Inspection machine in the model

Bentley.Oakes@uantwerpen.be 25 / 37



Structure

The AS for the Production System is defined in the structure

Has explicit inheritance, properties, children, references, and
cardinality

Bentley.Oakes@uantwerpen.be 26 / 37



Editor

Editor aspect:

The editor aspect defines the concrete syntax for the concept

This is very flexible, and can offer tables, diagrams, images in the
syntax

Spectrum from textual to graphical syntax

Model:

Bentley.Oakes@uantwerpen.be 27 / 37



Projectional Editing

But how can the user create an Inspection machine, what’s the
syntax?

MPS uses projectional editing, where the user edits the Abstract
Syntax Tree (AST) directly

That is, MPS only lets the user create what is valid at that time

Creating a new machine with Ctrl-Space

After selecting the Inspection Machine

Bentley.Oakes@uantwerpen.be 28 / 37



Pitfalls

Two large pitfalls in MPS:

Getting used to projectional editing

Not writing text like programming, but building up the model as a
tree

Languages and models are stored as MPS-specific XML

Can use version control inside MPS

<node concept="6EZK7" id="1OOs4CrBT3z">

<property role="TrG5h" value="sched-alice" />

<ref role="OT_FE" node="4t2UbpND4Ff" resolve="Alice" />

<node concept="6EZKv" id="4t2UbpNDbnB" role="6EZKo" />

<node concept="6EZKi" id="4t2UbpNDbnH" role="6EZKo">

<property role="6EZKh" value="4" />

<ref role="6EZKn" node="1OOs4CrBUhl" resolve="Cubearr" />

</node>

Bentley.Oakes@uantwerpen.be 29 / 37



Importing Languages

MPS makes it trivially easy to mix and extend languages

Bentley.Oakes@uantwerpen.be 30 / 37



Constraints

Arbitrary Java-like code written in the constraints aspect

Feedback aspect used for pop-up errors/warnings

Constraint aspect for Machine concept:

Bentley.Oakes@uantwerpen.be 31 / 37



Model-to-Text Generation

MPS has a textGen aspect for simple text generation

Generates DOT code for generating a graph

Bentley.Oakes@uantwerpen.be 32 / 37



Model-to-Model Transformation

MPS implements model transformation as reduction rules
Main purpose is to generate simpler and simpler models, then to
generate code/text
Example: Petri Net with inhibitor arcs → PN w/o IA → LoLA net
Idea is to promote language “stacks”

Bentley.Oakes@uantwerpen.be 33 / 37



Conclusion

Pros:

Very easy to start building languages and models with different
languages
Variety of aspects, which are explicit for each concept
Concrete syntax can be extended and flexible
Good documentation and tutorials
Can generate plugins for other Jetbrains IDEs, or whole language
editors

Cons:

Projectional editing can be difficult to get used to
Languages and models are not stored as plain-text
Doesn’t operate in standard ecosystem

Tutorials:

https://www.jetbrains.com/help/mps/

mps-calculator-language-tutorial.html

https://dev.to/antoine/

creating-a-simple-language-using-jetbrains-mps-c7d

Bentley.Oakes@uantwerpen.be 34 / 37

https://www.jetbrains.com/help/mps/mps-calculator-language-tutorial.html
https://www.jetbrains.com/help/mps/mps-calculator-language-tutorial.html
https://dev.to/antoine/creating-a-simple-language-using-jetbrains-mps-c7d
https://dev.to/antoine/creating-a-simple-language-using-jetbrains-mps-c7d


Outline

1 Production System

2 Xtext
Meta-model and Model
Abstract and Concrete Syntaxes
Constraints
Model-to-Text Generation
Model-to-Model Transformation

3 Meta-Programming System (MPS)
Meta-model and Model
Abstract and Concrete Syntaxes
Constraints
Model-to-Text Generation
Model-to-Model Transformation

4 Conclusion

Bentley.Oakes@uantwerpen.be 35 / 37



Conclusion

Two model-driven engineering tools have been presented by
implementing the Production System language:

Xtext - https://www.eclipse.org/Xtext/

MPS - https://www.jetbrains.com/mps/

Questions or comments?

Bentley.Oakes@uantwerpen.be 36 / 37

https://www.eclipse.org/Xtext/
https://www.jetbrains.com/mps/

	Production System
	Xtext
	Meta-model and Model
	Abstract and Concrete Syntaxes
	Constraints
	Model-to-Text Generation
	Model-to-Model Transformation

	Meta-Programming System (MPS)
	Meta-model and Model
	Abstract and Concrete Syntaxes
	Constraints
	Model-to-Text Generation
	Model-to-Model Transformation

	Conclusion

