ProMoBox:

A FRAMEWORK FOR GENERATING DOMAIN-SPECIFIC PROPERTY LANGUAGES

Wannes Marynen Januari 2021 dept. of Mathematics and Computer Science University of Antwerp Wannes.marynen@student.uantwerpen.be

overview

Paper

- Introduction
- ► Problem
- ► Solution
- Limitations and assumptions

Paper

Bart Meyers, Romuald Deshayes, Levi Lucio, Eugene Syriani, Hans Vangheluwe, and Manuel Wimmer

▶ 2014

introduction

DSM specific to problem space

Specification and verification of properties

Under represented

Problem

Specification and verification

Needs translation to LTL

Contracdicting with philosophy

PromoBox

generic languages for specifying and verifying temporal properties

fully automated specialise and integrate to DSML

a verification backbone

Solution

► 5 sub-languages:

- Design
- Run-time state
- Event based input
- State based output
- Property specification

Solution

► Fully automated

Verification Backbone

Solution

Fig. 3. The annotated metamodel E'.

Design

► Create model

Run Time State

- ► Notion of state
- ► Usefull for verification
- ► traces

Event based in put

Marked evt

Represents events

State based output

- Represent a state the system is in
- ▶ What transition led to this

State based output

Represent a state the system is in

▶ What transition led to this

► Create traces

Property specification

Create specifications visually

 Stay inside the problem domain

verification

- Translation to LTL and Promela
- Verification with SPIN
- Trace generation by SPIN
- Transformation of the counter-example to the domain-specific level
- Animation of the counter-example

Assumptions and Limitations

Boundedness

Format of the properties

Questions?