
GRAPH TRANSFORMATION USING GROOVE
Arend Rensink, University of Twente
November 2021

November 2021 Graph transformation using
GROOVE

1

November 2021Graph transformation using GROOVE 2

GRAPH TRANSFORMATION

 Formal language to capture dynamic system behaviour
 Graphs will capture state snapshots
 Transformation rules will capture program statements

 Aim (here): Behavioural analysis
 Qualitative behaviour captured by graph production system
 Requirements captured by logic properties expressed as graphs

 Why graph transformation?
 Very powerful, widely applicable paradigm
 Graphs are natural for many domains
 Makes for (very) rapid prototyping

Note: There is GT life beyond behavioural analysis
• Graph Grammars for reasoning about (non-textual) languages
• Graph Transformation for Model Transformation

November 2021Graph transformation using GROOVE 3

GRAPHS AS STATE MODELS

 Example state graph
 Nodes represents objects
 Edges represent fields or relations between objects

 Here: Circular buffer
 Objects inserted at the tail (last element)
 Objects removed from the head (first element)

November 2021Graph transformation using GROOVE 4

TYPE GRAPHS AS METAMODELS

 Example type graph
 Compare with (UML) class diagrams

 Nodes stand for object types
 Also supported: Node inheritance

 Edges stand for field/relation types
 Not shown here: multiplicities

November 2021Graph transformation using GROOVE 5

GRAPH FORMALISM

 Graphs in this presentation (simple graphs):
 Flat (i.e., not hierarchical)
 Directed, edge-labelled, no parallel edges
 Self-edges depicted as node labels

 Formally: with
 Global set of labels

 Fixed subsets of type labels and flags (node labels)
 finite set of nodes
 finite set of labelled edges

 Partial morphisms
 Structure-preserving node mappings (need not be injective)
 Isomorphism: bijective (total) morphism

 Used to abstract from node identities

November 2021Graph transformation using GROOVE 6

EXAMPLE MORPHISM

 Typing is a (weak) structuring mechanism
 Limits node and edge labels and their interconnection
 Does not enforce presence or absence of edges

State graph Type graph

GRAPH REWRITE RULES

 Graph Production System: Set of rewrite rules
 A rewrite rule embodies a particular change to a graph

 Left Hand Side (LHS): to be matched in the host (source) graph
 Difference of Right Hand Side (RHS) and LHS defines change
 Negative Application Condition (NAC): should not occur in host

graph (there can be any number of these)
 Compare to string rewriting/hyperedge replacement

 Graph rewrite rules are context sensitive

November 2021Graph transformation using GROOVE 7

LHS
RHS

NAC

Putting an element into a circular buffer:

November 2021Graph transformation using GROOVE 8

SINGLE-GRAPH REPRESENTATION

blue = eraser:
LHS, not RHS

to be matched and deleted

green = creator:
RHS, not LHS
to be added

black = reader:
LHS and RHS

to be matched and preserved

red = embargo:
NAC, not LHS

forbidden

November 2021Graph transformation using GROOVE 9

forbidden

GRAPH PRODUCTIONS

Rewrite rule

source
graph

matching

Graph transition
(labelled by rule and underlying morphism)

graph morphism target
graph

pushout

NACNACNACs

LHS RHS
rule morphism

November 2021Graph transformation using GROOVE 10

GRAPH TRANSITION SYSTEMS

put put

putput

get
get

get
get

Isomorphic state graphs
are collapsed together

November 2021Graph transformation using GROOVE

AIM: MODEL CHECKING

 Construct graph production system
 Directly from problem description, or
 From UML diagrams / other specification language, or
 From programs to be checked

 Generate state space
 States = graphs
 Transitions = transformations

 Formulate properties
 State invariants and forbidden patterns (safety)
 Liveness (absence of deadlock)
 Full temporal logic (LTL/CTL)

 Check properties on the model

11

WOLF, GOAT & CABBAGE

Propositiones ad Acuendos Juvenes (n.C.)
(“Problems to sharpen the young”)

November 2021Graph transformation using GROOVE 12

	Graph transformation using GROOVE
	Graph Transformation
	Graphs as state models
	Type graphs as metamodels
	Graph formalism
	Example morphism
	Graph Rewrite Rules
	Single-graph representation
	Graph Productions
	Graph Transition Systems
	Aim: model checking
	Wolf, Goat & Cabbage

