& University of Antwerp
I Faculty of Science

Model Driven Engineering Presentation

Mert Ege CAN
20212580

EXPLICIT MODELLING AND SYNTHESIS OF DEBUGGERS FOR HYBRID
SIMULATION LANGUAGES
(2017)

Simon Van Mierlo
Claudio Gomes
Hans Vangheluwe

Van Mierlo, S., Gomes, C., & Vangheluwe, H. (2017, April). Explicit modelling and synthesis of debuggers for hybrid simulation languages. In Proceedings of the Symposium on Theory of Modeling &
Simulation (pp. 1-12)

INTRODUCTION

Complex systems requires
1. Decomposition
2. Multiple formalisms
3. Separation of concerns

Multi Paradigm Modelling advocates the most appropriate use of
= Level of abstraction
= Formalisms

Combination of CBD and T-FSA

University of Antwerp
1 Faculty of Science

BACKGROUND

Statecharts (SC)
= Timed
= Reactive
= Autonomous system behaviour

Statecharts and Class Diagrams (SCCD)
= Attributes
= Methods
= SC model

BACKGROUND

Timed Finite State Automata (T-FSA)

University of Antwerp
1 Faculty of Science

Timed variant of Finite State Automata
Single clock

Simplified version of SC

States and Transitions

Timed or environmental event triggering

Algorithm 1 T-FSA Operational Semantics.

1: function SIMTFSA (M, sqg evs, At)

._.
Ny

¢

..._.

PR 0NN R W

clock < 0
state < sg
e+ 0
while state ¢ FINALSTATES(M) do
continue + true
while continue do
(evs, e;) < POPEV(ews, clock)
if ¢; = () then
tr «+ TRELAP(M, state,¢)
else
tr < TREV(M, state, ;)
end if
if ¢tr # () then
e+ 0
state <— TARGET(M, tr)
else
continue < false
end if
end while
clock «+ clock + At
£+ e+ At
end while
return clock, state

5: end function

BACKGROUND

Casual Block Diagram (CBD)

Blocks and connections
Inputs and one output
Algebraic operations
Time-sensitive operations

University of Antwer, P
1 Faculty of Science

Algorithm 2 CBD Operational Semantics.

1: function SIMULATECBD(M, mazlters, At)

e iha

P PO S G B e

10:
13
12
13:
14:
15
16:
17:

18:

clock + 0
state <— INITSIGNALS(M)
numlters + 0
while numlters < mazlters do
g <+ DEPGRAPH(M, numlters)
s + LOOPDETECT(g)
for cin s do
if ¢ = {gblock} then
state < COMPB (c, state)
else
state < COMPL(c, state)
end if
end for
clock + clock + At
numlters < numlters + 1
end while
return clock, state

19: end function

MODELLING SIMULATION ALGORITHMS

Generic Simulator Template

l.

Initialization

2. Execution of simulation ‘steps’

3.

University of Antwerp
1 Faculty of Science

Finalization

("~ statechart {inports: in; outports: out}

Simulator

- state: SimulationState
- clock: float

+ initialize()

+ endCondition()
+ executeStep()
+ finalize()

(started =@
U

— =

in::simulate

l/ self.initialize()

(running \ [not endCondition()] /

] self.executeStep()
[endCondition()] /
self.finalize(),
out::state, out::clock

!

(stopped)
-

MODELLING SIMULATION ALGORITHMS

Hierarchical Canonical Representation

“executeStep()” needs to be refined

Algorithm 3 Generic simulation algorithm.
1: function SIMULATE(M . params)
2> initialize(params)
3: while not endCondition() do
executeStep()
end while
finalize()
return getState(), getTime()
end function

PP i G o e

MODELLING SIMULATION ALGORITHMS

Hierarchical Canonical Representation

Instead of having one “Simulator” class, four classes were proposed

- ' - il i il i
Simulatorspe, F219 > Simulatorress gs child . Simulatoress_ss child Simulatorresa Trans
methods, attrivutes | < P3TENL | metnods, attributes <P3rent | methods, attrivutes <P2rent | metnods, attrivutes
behaviour (SC) behaviour (SC) behaviour (SC) behaviour (SC)
N = o 1| 1 = I pp——— -
e it e execute -----=--- o | e e s v execute ---------- =
e&& Ay result . oo B result --------------
g e execute ~--------- - [TR s »
o P R PRl i
- "--._,{'esll/t N e result---------------

Figure 1: The hierarchical structure of the T-FSA simulator.

MODELLING SIMULATION ALGORITHMS

Debugging
Time: Control: State:
= Run as-fast-as = Step through - God event
possible - Big/Small step = Trigger transition
- Scale-able realtime = Breakpoint - Manual state change
= Pause

10

HYBRID AUTOMATA

Combination of CBD and T-FSA
States can contain any CBD

CBD is simulated when that state
is reached

Outgoing transition triggered
based on the output of the CBD
Boundary Crossing Condition

after(2s) or

when wy < U

o
5 0(74
e@\\

l Pass_Up

d _down

LObj_Detected

when Iy > 100

when Fy > 100 .
LDrlver_Up

stop or

d_up when wgy > 0.6

& Driver_Down

N
Pass_Down

when wh < 0

N\
stop lor
when) wo < 0
p_up
pmsssaneman s e e e e st nennmean SIS 0
Initial State T-FSA State CBD State
Event State Event
E, wut¢>g Legend

Started

»@
>

11

HYBRID AUTOMATA

T-FSA-CBD Simulator
1. Synchronization of At parameter
An outer-while loop executes the model
When big step starts, the algorithm checks if any CBD model defined in current state
After each iteration, the algorithm checks whether any state events occur
T-FSA small step reads next event and executes any enabled transition

Al

Simulatoryes, |<hild) Simulator es, gs [<hild | Simulator eg, ss [<hild of Simulatoress 1rans
6{,0 methods, attributes parent | methods, attributes parent| methods, attributes parent| methods, attributes
- 6'\\\6/ (S behaviour (SC) behaviour (SC) behaviour (SC) behaviour (SC)
Simulatoryyp,id &&
methods, attributes
behaviour (SC) 2% ’ — x —~ : —~
N & | Simulatoregy [l sfSimulatoregy gsf<hid ofSimulatoregy, sofchild sl Simulatoregy gioc
\Q,o methods, attributes gar ent methods, attributes ‘farent methods, attributes gar ent methods, attributes
| behaviour (sC) behaviour (SC) behaviour (SC) behaviour (SC)

Figure 4: The hierarchical structure of the T-FSA-CBD simulator.

University of Antwerp 12
1 Faculty of Science

DISCUSSION

Hybrid Simulator satisfies the properties:
Language Continuity
Step Progression
Step Synchronization

Debugging operations properties:
Continuity
Soundness
Big Step-Small Step Correspondence

13

CONCLUSION

A novel method for implementing a debugging-featured simulator based
on hybrid formalisms were presented.

The simulation algorithm is implemented by following explicit modelling
using SCCD.

The deconstruction and reconstruction of CBD into states of the
Statecharts were shown.

University of Antwerp 14
1 Faculty of Science

IDEAS

Model-based System Engineering combines the engineering disciplines
using model-based approaches. As time and attribute based Statechart
formalisms (Software Eng.) were merged with CBDs (Control Eng.) in
order to form a new hybrid formalism, the proposed work can be
modelled as a domain-specific modelling language. The metamodel
should inherit both Statechart and CBD metamodels. Moreover,
simulation-specific debugging properties were also introduced.
Therefore, with this study, any suitable formalisms can be combined to
model complex systems then based on this model the simulation can be
executed.

University of Antwerp 15
1 Faculty of Science

y,g—m
|
|
] -

m ey

]“ llg
| f I 5

2
Weny &

LA iﬂi

b

CEWY R

