
Eugene Syriani

Model Transformation

with a little help from Hans Vangheluwe

Model Transformation

Motivation
Suppose I ask you to provide a software that converts

any E-R diagram into a UML class diagram,
how would you achieve that?

2

Model Transformation

The “programming” solution
• Write a program that takes as input a .ER file

and outputs a .UML file

• What are the issues?
– What if the ER file is a diagram? in XML format? Probably end up limiting

input from a specific tool only
– Similarly in UML, should I output a diagram (in Dia or Visio)? In XMI? In code

(Java, C#)?
– How do I organize my program?

 Requires knowledge from both domains
 Need a loader (from input file)
 Need some kind of visitor to traverse the model, probably graph-like data

structure
 Need to encode a “transformer”
 Need to develop a UML printer

• Not an easy task after all…
3

Model Transformation

The “modeling” way
1. Describe a meta-model of ER

– Define concepts and concrete visual syntax
– Generate an editor

2. Describe a meta-model of UML

3. Define a transformation T: MMER MMUML

– This is done in the form of rules with pre/post-conditions
 describes “what to transform” instead of “how to transform”

• Transformation model is executed (compiled or
interpreted) to produce the result

• Some model transformation languages give you a bi-
directional solution for free!

4

Model Transformation

What’s the difference?
• Typically encounter the same problems in modeling as in

programing solutions

• The difference is that you can find the problems more easily,
fix them very quickly and re-deploy the solution automatically

• Changed the level of abstraction to reduce accidental
complexity

• Developers not required to be programmers:
“He, who expresses the problem shall specify its solution”

5

Model Transformation

What is a model
transformation?

6

Model Transformation

Definition

A model transformation is the
automatic manipulation of input models

to produce output models,
that conforms to a specification

and has a specific intent.

7
L. Lúcio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G. Selim, E. Syriani & M. Wimmer. Model transformation intents
and their properties. Software & Systems Modeling: 15(3), pp. 647-684 (2016).

Model Transformation

Where should MT be specified and executed?

8

specification

execution

Model Transformation

Terminology

9

(= Source)

(= Input)

Model Transformation

Data structures to transform

• Linear sequence of symbols
– Data: symbol
– Connector: successor

• Example: string, iconic sentence

• Manipulation through string rewriting

Sequence

10

Model Transformation

String rewriting
• Model transformation paradigm: regular expression

– Stream Editor (sed)

• Model “Hello world”

• Metamodel .*

• Model transformations/(.*)\s([a-z]*)/\2\t\1/g

• Transformation language is rule-based, regular expression
– s/ LHS to be matched
– / RHS /g to rewrite, with labels

11

Model Transformation

Data structures to transform

•

Tree

12

Model Transformation

Tree rewriting
• Model transformation paradigm: parser

– Gentle compiler construction system

• Model

• Metamodel

• Model transformation
– Transformation language is term rewriting with production rules

13

root expr(->X)
nonterm expr(->Expr)
 rule expr(->X): expr2(->X)
 rule expr(->add(X,Y)): expr(->X) "+" expr2(->Y)
nonterm expr2(->Expr)
 rule expr2(->mult(X,Y)): expr2(->X) "*" expr2(->Y)
 rule expr2(->num(X)): Number(->X)
token Number(->INT)

expression ::= expression "+" expr2 | expr2
expr2 ::= expr2 "*" expr2 | Number

Model Transformation

Data structures to transform

•

Graph

14

Model Transformation

Graph transformation
• Model transformation paradigm: algebraic graph

transformation
– T-Core

• Model

• Model transformation
– Rule-based Graph Transformation vs. Graph Grammar

15

, ,

Model Transformation

Transformations for language engineering

16

• Abstract syntax to abstract syntax
– Tree rewriting
– Graph transformation (Model-to-model and simulation)

• Abstract syntax to concrete syntax (textual)
– Model-to-text transformation

• Concrete syntax to concrete syntax (textual)
– String rewriting

• Concrete syntax to abstract syntax
– Tree rewriting (Parsing)

Model Transformation

Two main transformation types in MDE
• Model-to-text
– Visitor-based: traverse the model in an object-oriented framework
– Template-based: target syntax with meta-code to access source model

• Model-to-Model
– Direct manipulation: access to the API of M3 and modify the models directly
– Operational: similar to direct manipulation but at the model-level (OCL)
– Rule-based

 Graph transformation: implements directly the theory of graph transformation,
where models are represented as typed, attributed, labelled, graphs in category
theory. It is a declarative way of describing operations on models.

 Relational: declarative, describing mathematical relations. It define constraints
relating source and target elements that need to be solved. They are naturally
multi-directional, but in-place transformation is harder to achieve

17
K. Czarnecki and S. Helsen. Feature-based survey of model transformation approaches. IBM Systems Journal: 45(3),
621-645 (2006).

Model Transformation

Typical use cases of
model transformation

18

Model Transformation

Model transformation intent classification
Refinement
• Refinement
• Synthesis
• Serialization

Abstraction
• Abstraction
• Reverse Engineering
• Restrictive Query
• Approximation

Semantic Definition
• Translational Semantics
• Simulation

Language Translation
• Translation
• Migration

Constraint Satisfaction
• Model Finding
• Model Generation

Analysis

Editing
• Model Editing
• Optimization
• Model Refactoring
• Normalization
• Canonicalization

Model Visualization
• Animation
• Rendering
• Parsing

Model Composition
• Model Merging
• Model Matching
• Model Synchronization

19
L. Lúcio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G. Selim, E. Syriani & M. Wimmer. Model transformation intents
and their properties. Software & Systems Modeling: 15(3), pp. 647-684 (2016).

Model Transformation

Refinement category

Groups intents that produce a more precise model by
reducing design choices and ambiguities with respect to a

target platform.

• Refinement (model-to-model)
• Synthesis (model-to-text)

20

Model Transformation

Refinement
• Transform from a higher level specification (e.g., PIM) to a

lower level description (e.g., PSM)

• Adds information to models

• M1 refines M2 if M1 can answer all questions that M2 can for
a specific purpose

21

PhoneApps DSM of a conference registration mobile application Representation of the model in AndroidAppScreens

PhoneApps DSL To Android Activities
J. Denil, A. Cicchetti, M. Biehl, P. De Meulenaere, R. Eramo, S. Demeyer, & Vangheluwe, H. Automatic deployment
space exploration using refinement transformations. Electronic Communications of the EASST: 50 (2012).

Model Transformation

Synthesis
• Refinement where the output is an executable artifact

expressed in a well-defined language format
– Typically textual

• Model-to-code generation: transformation that produces
source code in a target programming language

• Refinement often precedes synthesis

22

Statecharts to Python Compiler

Statecharts model Generated Python
code

if e == 0: # event “e"
if table[1] and self.isInState(1) and self.testCondition(3):
if (scheduler == self or scheduler == None) and table[1]:

self.runActionCode(4) # output action(s1)
self.runExitActionsForStates(-1)
self.clearEnteredStates()
self.changeState(1, 0)
self.runEnterActionsForStates(self.StatesEntered, 1)

self.applyMask(DigitalWatchStatechart.OrthogonalTable[1], table)
handled = 1

if table[0] and self.isInState(0) and self.testCondition(4):
if (scheduler == self or scheduler == None) and

table[0]:
self.runActionCode(5) # output action(s2)
self.runExitActionsForStates(-1)
self.clearEnteredStates()
self.changeState(0, 0)

self.runEnterActionsForStates(self.StatesEntered, 1)

self.applyMask(DigitalWatchStatechart.OrthogonalTable[0], table)
handled = 1

s
1

s
2

e

M. Raphael & H. Vangheluwe. Modular artifact synthesis from domain-specific models. Innovations in Systems and
Software Engineering: 8(1) pp. 65-77 (2012).

Model Transformation

Abstraction category

Inverse of refinement category.
Groups intents where some information of a model is

aggregated or discarded to simplify the model and
emphasize specific information.

• Abstraction (model-to-model)

• Query

• Reverse Engineering

• Approximation

23

Model Transformation

Abstraction
• Inverse of refinement

• Implication of satisfaction of properties

• If M1 refines M2 then M2 is an abstraction of M1

Example:

“Find all actors who played together in at least 3 movies and
assign the average rating to each clique” outputs a view of a
model representing a subset of IMDB represented as a
graph composed of strongly connected components with
the ratings aggregating individual ratings.

24T. Horn et al. The TTC 2014 Movie Database Case. Transformation Tool Contest 2014.

Model Transformation

Query
• A query requests some information about a model and

returns that information in the form of a proper sub-model
or a view
– Projection of a sub-set of of the properties of M
– View of a model that is not a sub-model, but an aggregation of

some of its information is also a abstraction

• Example: “Get all the leaves of a tree”

• Tool support: EMF-IncQuery

25

Model Transformation

Querying models with IncQuery

26
Z. Ujhelyi, et al. EMF-IncQuery: An integrated development environment for live model queries. Science of Computer
Programming: 98, 80-99 (2015).

Model Transformation

Semantic Definition category

Groups intents whose purpose is to define the semantics of
a modeling language.

• Translational Semantics (model-to-model)

• Operational Semantics

(simulation by graph transformation)

27

Model Transformation

Translational Semantics
• Gives the meaning of a model in a source language in

terms of the concepts of another target language

• Typically used to capture the semantics of new DSLs

28

Model
TransformationMeta-Model

Language

Semantic
Mapping

Concrete
Syntax

Abstract
Syntax

Semantic
Domain

Syntax Semantics

Syntax
Mapping

Pragmatics

Model Transformation

Translational Semantics
• Simulink Block Diagram’s semantics expressed as Ordinary

Differential Equations

• UML activity diagrams semantics expressed as Petri nets

29
E. Syriani and H. Ergin. Operational Semantics of UML Activity Diagram: An Application in Project Management. RE 2012
Workshops: pp. 1-8, IEEE (2012)

Model Transformation

Simulation
• Defines the operational semantics of a modeling

language that updates the state of the system modeled

• The source and target meta-models are identical

• The target model is an “updated” version of the source
model: no new model is created

• Simulation updates the abstract syntax, which may trigger
modifications in the concrete syntax

30

Petri nets simulator

T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe and M. Wimmer. Explicit Transformation Modeling. MODELS 2009 Workshops,
LNCS: 6002, pp. 240-255, Springer (2010).

QUESTION
Model Transformation

 Synthesis

Generate JavaDocs from a class diagram.
Input: Class diagram

Output: HTML document

31

Abstraction
Analysis
Animation
Approximation
Canonicalization
Migration
Model Editing
Model Finding
Model Generation
Model Matching
Model Merging
Model Refactoring
Model Synchronization
Normalization
Optimization
Parsing
Refinement
Rendering
Query
Reverse Engineering
Serialization
Simulation
Synthesis
Translation
Translational Semantics

QUESTION
Model Transformation

 Refinement

Augment a class diagram by adding navigability, role names,
attribute types, method return and parameter types.

Input: Class diagram
Output: Class diagram

32

Abstraction
Analysis
Animation
Approximation
Canonicalization
Migration
Model Editing
Model Finding
Model Generation
Model Matching
Model Merging
Model Refactoring
Model Synchronization
Normalization
Optimization
Parsing
Refinement
Rendering
Query
Reverse Engineering
Serialization
Simulation
Synthesis
Translation
Translational Semantics

QUESTION
Model Transformation

 Simulation

Define the actions performed by a traffic light to transition from one
state to another.

Input: Traffic light model
Output: Traffic light model

33

Abstraction
Analysis
Animation
Approximation
Canonicalization
Migration
Model Editing
Model Finding
Model Generation
Model Matching
Model Merging
Model Refactoring
Model Synchronization
Normalization
Optimization
Parsing
Refinement
Rendering
Query
Reverse Engineering
Serialization
Simulation
Synthesis
Translation
Translational Semantics

QUESTION
Model Transformation

 Query

Extract the classes with no super-class from a class
diagram.

Input: Class diagram
Output: Class diagram

34

Abstraction
Analysis
Animation
Approximation
Canonicalization
Migration
Model Editing
Model Finding
Model Generation
Model Matching
Model Merging
Model Refactoring
Model Synchronization
Normalization
Optimization
Parsing
Refinement
Rendering
Query
Reverse Engineering
Serialization
Simulation
Synthesis
Translation
Translational Semantics

QUESTION
Model Transformation

 Translational Semantics

Map a custom DSML for stop watches into a Statecharts model in order
to define its behavior.

Input: Watch DSM
Output: Statechart

35

Abstraction
Analysis
Animation
Approximation
Canonicalization
Migration
Model Editing
Model Finding
Model Generation
Model Matching
Model Merging
Model Refactoring
Model Synchronization
Normalization
Optimization
Parsing
Refinement
Rendering
Query
Reverse Engineering
Serialization
Simulation
Synthesis
Translation
Translational Semantics

Model Transformation

Vocabulary
• Relationship between source & target meta-models

– Endogenous: Source meta-model = Target meta-model

– Exogenous: Source meta-model ≠ Target meta-model

• Relationship between source & target models
– In-place: Transformation executed within the same model

– Out-place: Transformation produces a different model

36

Exogenous Outplace Inplace

Refinement,

Synthesis,

Translational semantics

Refinement,

Query
Simulation

Model Transformation

Rule-based model
transformation

37

Model Transformation

Graph transformation for simulation
• Models are considered as directed, typed, attributed

graphs

• Transformations on such graphs are considered as graph
rewritings

• Features:
– Declarative paradigm
– Rules defined as pre- and post-conditions

• Tools: MoTif, Henshin, GReAT

38

Model Transformation

Metamodel of Pacman

39

Model Transformation

Concrete syntax

40

Model Transformation

Generate modeling environment

41

Model Transformation

Graph transformation rule

42

Model Transformation

Rule-based graph transformation

43

right

right

left

right

left

up down up down

right

L K R

G

gLink gLink

gLink

pLink fLink

right

left

right

left

up down up down

H

gLink

pLink fLink

m

If there exists an occurrence of L in G then replace it with R

Transformation
rule

Input model

Model Transformation

Mechanics of rule application
•

44

QUESTION
Model Transformation

 CRUD operations

What is the worst upper-bound of the complexity for
applying a graph transformation rule?

45

Model Transformation

Operational semantics

46L H S R H SN A C

L H S R H S

L H S R H S

L H S R H S

Model Transformation

Negative application conditions
Non-applicable rule

47

L H S R H SN A C

Model Transformation

Negative application conditions
Applicable rule

48

L H S R H SN A C

Model Transformation

Rule scheduling
• In what order should the rules be executed?

– Don’t care: randomly, non-deterministically
– Partial order
– Explicit ordering

• MoTif is the transformation language of AToMPM

49

Initial rule

Rule type

If match found If no match found

Terminate transformation
in success

Terminate transformation
in failure

Model Transformation

Scheduling of the rules

50

QUESTION
Model Transformation

 Rule with only a LHS

 LHS consists of solely a food element

 It will be encapsulated in a negative query
1. If rule is applicable: FAIL

2. Otherwise: SUCCESS

How to specify the rule IsThereFoodLeft?

51

Model Transformation

Simulation of a model

52

1. pacmanDie
2. pacmanEat
3. isThereFoodLeft
4. ghostMoveLeft
5. ghostMoveRight
6. ghostMoveUp
7. ghostMoveDown
8. pacmanMoveLeft
9. pacmanMoveRight
10. pacmanMoveUp
11. pacmanMoveDown

Model Transformation

Translation
• Maps concepts of a model in a source language to

concepts of another target language, while translating the
semantics of the former in terms of the latter

• Similar to translational semantics, but the source language
already has a semantics

53

Class diagram to RDBMS
J. Bézivin et al. Model Transformation in Practice Workshop Announcement. MODELS, 2005

Model Transformation

CD to RDBMS transformation

54

CD metamodel RDBMS metamodel

QUESTION
Model Transformation

Implement in MoTif the transformation for:
Classes to tables

Attributes to columns

55

Model Transformation

MoTif main rule types

• ARule: (atomic) Applies rule on one match

• FRule: (for all) Applies rule on all matches found in parallel

• SRule: (star) Applies rule recursively as long as a match is found

• QRule: (query) Finds a match, only LHS no RHS

• BRule: (branch) Randomly (uniformly!) selects one matching rule

• BSRule: (branch star) Applies BRule as long as one rule matches

56

Model Transformation

Model Transformation

Pattern model <> Instance model

Instance model

Pattern model

Model Transformation

Pattern language
1. Generic pattern language

+ Most economic solution
 - Generic concrete syntax (MOF-like)
 - Allow to specify patterns that will
 never occur

2. Customized pattern language
+ Concrete syntax adapted to the source/target languages (DSL)
+ Exclude patterns that do not have a chance to match
 - More work for the tool builder

59[E.b1]

Model Transformation

RAMification process

60

Model Transformation

Domain-specific pattern languages
Ramification Process: automatically generated environment for pattern language

61

Input Meta-Model Output Meta-Model

Relax Augment Modify

Customized Pattern Meta-Model

Model Transformation

RAMification process

• Relaxes the constraints imposed by the meta-model of the
domain

• Instantiation of originally abstract classes

• Reduction of minimal multiplicity of every association end

• Constraints filtering (manual)
– Removed
– Preserved
– Depends on static semantics of language

Relaxation

62

Model Transformation

RAMification process

• Augments the resulting meta-model with additional
information

• Classes & associations integrated in rule meta-model

• Re-typing of all meta-model entities to pre/post

• Add model transformation specific properties
– Labels
– Parameter passing (pivots)

• Allow abstract rules

• Augmented constraints

• Connection with generic/trace elements

Augmentation

63

Model Transformation

RAMification process

• Performs further modifications on the resulting meta-model

• Update namespaces

• Change type of attributes
– Pre-condition classes: constraint type
– Post-condition classes: action type
– But preserve knowledge of original type for well-formedness

• Adaptation of concrete syntax (semi-automatic)
– Abstract classes

– Association ends
– Other (e.g., replace topological visual syntax constraints)

Modification

64

Model Transformation

RAMification process

65

Relax Augment Modify

Model Transformation

http://msdl.cs.mcgill.ca/people/mosterman/campam/cca01/cacsd00a/index.html/ek.pdf

1990s: Honeywell’s DoME
Domain Modeling Environment

http://msdl.cs.mcgill.ca/people/mosterman/campam/cca01/cacsd00a/index.html/ek.pdf

Model Transformation

Model Transformation

Model Transformation

Transforming Strings, Trees, or Graphs?

Model Transformation

matching, pivot, scope

70

Model Transformation

Matching Algorithms (1): Search Plans

Model Transformation

Matching Algorithms (2): Constraint Satisfaction

VF2 “Very Fast 2”

Model Transformation

Matching Algorithms (2): improving performance through (user) “hints”

Model Transformation

Matching Algorithms (2): improving performance through heuristics

Model Transformation

Matching Algorithms: improving performance of
“incremental” model transformation: the Rete algorithm

Model Transformation

Choice parallel independence, critical pairs→

Model Transformation

Choice

single rule, multiple matches multiple rules, multiple matches

Model Transformation

MatchSet = the set of all the matches (morphisms)

Model Transformation

De-constructing a rule in Matching and Re-Writing

Model Transformation

Model-to-model transformation
for translation

• Declarative paradigm

• Rules defined as non-destructing pre- and post-conditions
– Source pattern to be matched in the source model
– Target pattern to be created/updated in the target model for each

match during rule application

• Typically models are represented in Ecore

• Input model is read-only

• Output model is write-only

• Tools: ATL, ETL, QVT-R

80

Model Transformation

ATL transformation
Classes–Tables + Attributes–Columns

81

Create new model

Standard rule LHS: 1 element type

RHS: elements
to create in
new model

Call implicitly
another rule

Helper in OCL
Call temporary

queries

Model Transformation

Execution of a declarative rule in ATL
1.Find all possible matches in the source model

2.Create elements specified in the target pattern on a target
model

3. Initialize attributes and links of the newly created elements

4.Create traceability links from the elements in the source
model matched by the source pattern to the created
elements in the target model

• Standard ATL rule applied once for each match
– Like FRule

82

Model Transformation

Feature-Based Survey of Model
Transformation Approaches

83
K. Czarnecki and S. Helsen. Feature-based survey of model transformation approaches. IBM Systems Journal: 45(3),
621-645 (2006).

Model Transformation

Rule patterns
• Model fragments

• Using abstract or concrete syntax

• Syntactic separation

84

MoTif rule

FUJABA/Henshin compact notation
module Person2Contact;
create OUT: MMb from IN: MMa {
rule Start {

form p: MMa!Person(
p.function = ‘Boss’

)
to c: MMb!Contact(

name <- p.first_name + p.last_name)
}

ATL rule

Model Transformation

Choice explore all possibilities analysis over all traces→ →

Model Transformation

Trace of Transformation Execution vs. Bi-Directional Transformations

Model Transformation

Multi-directional rules

87

TGG rule

TGG operational rules

Model Transformation

Rule scheduling strategies
Explicit

88

top relation ClassToTable {
domain uml c:Class {

package = p:Package{},
isPersistent = true,
name = cn

}
domain rdbms t:Table {
schema = s:Schema{},
name = cn,
cols = cl:Column {
name = cn + ‘_tid’,
type = ‘NUMBER’},
pkey = cl
}
when {
PackageToSchema (p, s);
}
where {
AttributeToColumn (c, t);
}

}

Model Transformation

Rule Scheduling (aka Control)

Model Transformation

Rule Scheduling (aka Control)

Model Transformation

Rule Scheduling (aka Control)

Model Transformation

Increased Expressiveness: rule amalgamation
Arend Rensink and Jan-Hendrik Kuperus. Repotting the Geraniums: On Nested Graph Transformation Rules. Graph
Transformation and Visual Modeling Techniques (GT-VMT). In ECEASST Volume 18. 2009.

https://journal.ub.tu-berlin.de/eceasst/article/view/260

We have a number of flower pots, each of
which contains a number of geranium
plants. These tend to fill all available space
with their roots, and so some of the pots
have cracked. For each of the cracked pots
that contains a geranium that is currently in
flower, we want to create a new one, and
moreover,to move all flowering plants from
the old to the new pot. Create a single
parallel rule that achieves this in a single
application, without the use of control
expressions.

https://journal.ub.tu-berlin.de/eceasst/article/view/260

Model Transformation

Increased Expressiveness: rule amalgamation

Operationally (in terms of T-Core building blocks):
Match – Match - … - Re-Write

Model Transformation

Plethora of model transformation languages

94
GReAT ProGReS

GrGen.NET

DSLTrans MOLA

Model Transformation

98

	Model Transformation
	Motivation
	The “programming” solution
	The “modeling” way
	What’s the difference?
	What is a model transformation?
	Definition
	Where should MT be specified and executed?
	Terminology
	Data structures to transform
	String rewriting
	Data structures to transform
	Tree rewriting
	Data structures to transform
	Graph transformation
	Transformations for language engineering
	Two main model transformation in MDE
	Typical use cases of model transformation
	Model transformation intent classification
	Refinement category
	Refinement
	Synthesis
	Abstraction category
	Abstraction
	Query
	Querying models with IncQuery
	Semantic Definition category
	Translational Semantics
	Translational Semantics
	Simulation
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Vocabulary
	Rule-based model transformation
	Graph transformation for simulation
	Metamodel of Pacman
	Concrete syntax
	Generate modeling environment
	Graph transformation rule
	Rule-based graph transformation
	Mechanics of rule application
	Slide 45
	Operational semantics
	Negative application conditions
	Negative application conditions
	Rule scheduling
	Scheduling of the rules
	Slide 51
	Simulation of a model
	Translation
	CD to RDBMS transformation
	Slide 55
	MoTif main rule types
	Slide 57
	Slide 58
	Pattern language
	Ramification process
	Domain-specific pattern languages
	Ramification process
	Ramification process
	Ramification process
	Ramification process
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Model-to-model transformation for translation
	ATL transformation
	Execution of a declarative rule in ATL
	Feature-Based Survey of Model Transformation Approaches
	Rule patterns
	Slide 85
	Slide 86
	Multi-directional rules
	Rule scheduling strategies
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Plethora of model transformation languages
	Slide 98

