
Assignment 1

Waterway Modeling in MetaDepth

Joeri Exelmans

joeri.exelmans@uantwerpen.be

1 Practical Information

The goal of this assignment is to design a meta-model for your a domain-specific
(modeling) language (DSL), to create instances of this meta-model and to verify
conformance between (instance) model and meta-model. You will also specify
the operational semantics of this language. You will use the textual modeling
tool MetaDepth, and its action+constraint language EOL.

The different parts of this assignment:

1. Implement the abstract syntax for your language(s) in MetaDepth.

2. Enrich the abstract syntax with constraints (using EOL) so that you can
check that every model is well-formed.

3. Create some instance models that are representative for all the features in
your language. The requirements for two conforming models are specified
below, and there should be a third non-conforming model to show that
your constraints detect non-conforming models.

4. Write operational semantics (using EOL) that, given a conforming model,
simulates one “step”, producing a new conforming model.

5. Write a report that includes a clear explanation of your complete solution
and the modeling choices you made. Also mention possible difficulties
you encountered during the assignment, and how you solved them. Don’t
forget to mention all team members and their student IDs!

This assignment should be completed in groups of two if possible. Working
individually is also allowed.

Submit your assignment as a zip file (report in pdf + commented abstract
syntax and operational syntax models) on Blackboard before 19 October 2022,
23:59h1. If you work in a group, only one person needs to submit the zip file,
while the other person only submits a text file containing the name of the
partner. Contact Joeri Exelmans if you experience any issues.

1Beware that BlackBoard’s clock may differ slightly from yours.

1

2 Requirements

You will develop a domain-specific modeling language for a network of waterway
traffic. Your language will capture topological information (“what is connected
to what?”) about waterways, and the watercraft that navigates on it.

You will first develop the abstract syntax of your language, followed by the
operational semantics.

2.1 Abstract Syntax

The abstract syntax of the DSL can be thought of as a set of constraints that
instances of your language must conform to. These include multiplicities on
types, relations between types, and additional constraints.

2.1.1 Waterway network abstract syntax

The abstract syntax of our waterway network-language consists of the following
types:

Watercraft - A manmade “thing” (e.g., boat, ship, drone, ...) that at any
time must be located on exactly one Segment or Confluence.

Segment - A “piece” of waterway. A Segment instance can contain at most
1 Watercraft instance. A Segment has one “out”-connection (that con-
nects to another Segment), and one “in”-connection (that also connects
to another Segment).

Source - A special segment type that only has an “out”. It is a place where new
Watercraft is spontaneously generated. A Source has an “out” connection
to a Segment, onto which it puts generated Watercraft, as we’ll see in the
operational semantics. A Source keeps a counter of how many Watercraft
instances it has generated so far. A Source has a rate, which is a strictly
positive integer parameter, indicating the number of steps to wait before
another Watercraft is generated (this will be explained in more detail in
the section on operational semantics).

Sink - A special segment type that only has an “in”. It is a place where
Watercraft is destroyed/consumed. A Sink keeps a counter of how many
Watercraft instances it has consumed so far.

Note: Sources and Sinks cannot contain any Watercraft.

Confluence - A special segment type with two in-connections (in0 and in1)
and two out-connections (out0 and out1). Just like an ordinary segment,
a confluence can contain (at most) 1 Watercraft instance. A Confluence
has a mode, which is either 0 or 1.

We’ll see that, either traffic can flow from in0 to out0, or from in1 to out1,
both not both simultaneously. (Also, traffic can never flow from in0 to
out1 or from in1 to out0.)

2

Schedule - A total ordering on all the elements (Segments, Sources, Sinks and
Confluences) that make up the waterway network. This ordering will be
used in the operational semantics. For any waterway network, exactly
one Schedule must exist, which defines an ordering on all elements of the
network.

For all of these connections, an “in” must connect to an “out” (and vice-versa):
If an element A’s “out” connects to another element B, then B’s “in” must
connect to A. Further, a segment’s output is not allowed to be connected to the
same segment’s input.

Hint: Introducing additional abstract type(s), may make your solution cleaner.
MetaDepth also supports (multiple) inheritance!

src seg con

seg

src

seg

seg

snk

snkseg

snk

con

seg

src

seg

seg

seg

con

seg

seg

seg

Figure 1: Some example waterway networks.

2.2 Operational Semantics

The semantics of our waterway network-language can be understood as a se-
quence of discrete macro-steps. Every step has as input a valid instance, and
during the step, this instance is modified (in-place) to produce a new valid in-
stance at the end of the step. In this assignment, we will specify the logic of
step execution in an operational (think: procedural) manner, using the EOL
language.

The implementation of the operational semantics of a step should be as
follows:

� (Added Oct 17:) During a macro-step, every watercraft is allowed to make
at most one move.

3

� During a macro-step, every segment (i.e., ordinary Segment, Sink, Source,
Confluence) performs one micro-step.

� A segment cannot perform a micro-step until all of its outputs have performed
a micro-step first. As a consequence, the first segment that will perform a
micro-step in your model will always be a Sink. Hint: In EOL, you can use
a Set (or Map) to keep track of the segments that haven’t yet performed
a micro-step during the current macro-step. At the beginning of each
macro-step, this Set contains all segments of the waterway network. Then,
from this Set, you keep selecting the segments that can be micro-stepped
(because all of their outputs have performed a micro-step), let them perform
a micro-step, and remove them from the Set. Repeat this until the
Set is empty, which concludes the macro-step. Even though there may
be multiple valid micro-step execution orders, they should all give the
same (correct) result. In other words, the operational semantics are
deterministic.

The order in which the different segments in your network perform micro-
steps, is determined by your Schedule object. The Schedule is never al-
tered: it remains the same for all steps.

� Depending on the type of segment, a micro-step looks as follows:

Sink . If the Sink’s input segment has a Watercraft available (what this
availability means, is explained later), it consumes the Watercraft, re-
moving it from the input segment, and incrementing the Sink-counter
by 1.

(ordinary) Segment . If the Segment’s input has a Watercraft avail-
able, and this Segment has no Watercraft, then this Watercraft is
moved onto this Segment.

Confluence .

– If the Confluence already has a Watercraft on it, nothing happens
(not enough space).

– Otherwise: If the current mode of the Confluence is x, that means
that most recently (in a previous step), a Watercraft from input
ix was allowed passage. Because a Confluence implements fair
scheduling, in this step, it will give priority to input 1−x (in other
words, the input that was not most recently allowed passage).
If input 1 − x has a Watercraft on it, the Watercraft is moved
from that input onto the Confluence, and the mode is updated to
1−x. If input 1−x does not have a Watercraft on it, but input x
does have a Watercraft on it, then that Watercraft is moved from
that input onto the confluence (and the mode remains equal to
x).

Source . Does nothing.

4

� Depending on the type of segment A, it has a Watercraft available for
another segment B if:

Source . True iff it has been n ≥ r steps since a Watercraft was produced
by the Source, where r is the Source’s rate. A Source also has a
counter that counts the number of watercraft that has been produced.

Note: If during a step, a Source has a Watercraft available for the
next segment, this does not mean that a Watercraft is actually pro-
duced. A Watercraft is only produced if the next segment is also able
to take the Watercraft.

(ordinary) Segment . True iff the segment A has a Watercraft on it.

Confluence . True iff the Confluence A has a Watercraft on it, and B is
output outx of A, where x is A’s current mode.

Sink . Never.

� Recap (this is not new information): A Confluence’s mode serves two
purposes within the same step: First, when its outputs are being micro-
stepped, the mode determines the output Watercraft should use to leave
the Confluence, Next, (still in the same step) when the Confluence is being
micro-stepped, it determines which input has the lowest priority.

� For every step, a textual, human-readable trace of the actions executed
during the step must be printed (as in Figure 3). You are free to have
more or less information than given, as long as all required information
for each step is output.

– Clearly describe your trace file structures in your report!

Figure 2 shows the effect of two different schedules on the same waterway
network configuration. In this example, the first schedule has a better through-
put than the second. In general, schedules that let segments step from sink to
source, will have the highest throughput (many “moves” in a macro-step), and
schedules that step from source to sink, will have the lowest throughput (few
“moves’ in a macro-step). You could try out different schedules in your own
models, and observe this effect.

Figure 4 shows the execution of an example model.
Think carefully about what information should be stored in the abstract

syntax, and what information is only temporarily relevant during the execution
of a step.

MetaDepth does not automatically verify if your model still conforms to your
meta-model after executing a step. You should manually instruct MetaDepth
to perform this check after every step.

3 Report

There are a number of requirements for the report. Above all, it must convey
a clear understanding of all aspects of the assignment, without having to inves-

5

seg2

seg1seg0

1

seg2

2

with Schedule = [seg2, seg1, seg0]

seg1seg0

12

seg2

with Schedule = [seg0, seg1, seg2]

seg1seg0

12

assuming that the input of seg0 has no watercraft available

OR

step

Figure 2: An example of the effect of two different schedules.

tigate the model files. I.e., your model files will only be used as a support for
your report, not the other way around!

Specifically, the report must contain:

� A brief outline of how the abstract syntax and operational syntax, includ-
ing all decisions and assumptions (if any) made.

� A brief description of the constraints present in your languages.

� Three example models:

– Two conforming, one non-conforming (i.e., violates at least one of
the constraints).

� For each model, show:

– A small, graphical diagram (doesn’t need to be elaborate, but enough
to understand the trace). This can be as simple or as fancy as you
want. DrawIO (https://draw.io/), PlantUML (https://plantuml.
com/), GraphViz (https://graphviz.org/) and MS Paint (https:
//98.js.org/) are excellent tools to create such a diagram.

– The results of constraint checking on the non-conforming model,
which constraint(s) fail(s) and why.

6

https://draw.io/
https://plantuml.com/
https://plantuml.com/
https://graphviz.org/
https://98.js.org/
https://98.js.org/

> load "WN

:: loading ./WN.mdepth (22 clabjects created in 0.049 s).

> verify

:: Constraints evaluated, (0) violations

> load eol WN

Warning: current context is $root, setting context to wn

Performing step

--Removed w1 from seg0b to snk0

attempt highest priority input 0

--Moved w3 from seg0a to con

--Source produces NEW watercraft MD_59a7f8a4b4dc41c19cee5f2ef91268c4

--Moved MD_59a7f8a4b4dc41c19cee5f2ef91268c4 from src0 to seg0a

src1.wait=1

src0.wait=0

:: loading ./WN.eol

> verify

:: Constraints evaluated, (0) violations

> load eol WN

Warning: current context is $root, setting context to wn

Performing step

--Moved w3 from con to seg0b

attempt highest priority input 1

--Moved w2 from seg1a to con

src1.wait=0

src0.wait=0

:: loading ./WN.eol

> verify

:: Constraints evaluated, (0) violations

> load eol WN

Warning: current context is $root, setting context to wn

Performing step

--Removed w3 from seg0b to snk0

--Moved w2 from con to seg1b

attempt highest priority input 0

--Moved MD_59a7f8a4b4dc41c19cee5f2ef91268c4 from seg0a to con

--Source produces NEW watercraft MD_cb44c698bd7c42da82c6b927ed0dc6c5

--Moved MD_cb44c698bd7c42da82c6b927ed0dc6c5 from src1 to seg1a

--Source produces NEW watercraft MD_2c99b934dfef4304a3f004d8a24f30d4

--Moved MD_2c99b934dfef4304a3f004d8a24f30d4 from src0 to seg0a

src1.wait=2

src0.wait=0

:: loading ./WN.eol

> verify

:: Constraints evaluated, (0) violations

Figure 3: An example human-readable trace produced by my solution in Fig-
ure 4. Feel free to have more or less information than this.

7

– Interesting parts of the textual trace from the simulation, plus any
extra explanation required to clearly understand the traces.

4 Useful Links and Tips

� MetaDepth main page: http://MetaDepth.org/

– http://MetaDepth.org/papers/TOOLS.pdf

– http://MetaDepth.org/Documentation.html

– http://MetaDepth.org/Examples.html

� The Epsilon Object Language (EOL) is fairly rich: https://www.eclipse.
org/epsilon/doc/eol/

� A package for the Atom text editor (https://atom.io/), that allows a
very basic syntax highlighting for both EOL and MetaDepth is available:
http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/assignments/

MetaDepth.zip

Any updates and bugfixes made to this package are allowed, and free to
be mentioned in your submission/report or via email.

Alternatively, you can use JavaScript syntax highlighting for EOL, and it
will look kindof OK.

� Use an .mdc file to save time

– See slide 47 of https://MetaDepth.org/tutorial/tutorial.pdf

� While you can do a lot with MetaDepth, its documentation is fairly lim-
ited. The TOOLS paper and the tutorial provide some insights, but a lot
are hidden in the source code. Below is a short summary of some possibly
useful features:

– Nodes can be marked abstract to prevent users from instantiating
them.

– Attributes can be marked as an identifier (using {id}) to ensure
global uniqueness. This is similar to a database’s ID. An example:
name: String{id};

– Collection attributes can be marked unique to prevent duplicate
items and ordered to keep the order of the elements.

items: Item[*] {unique, ordered};

– Builtin attribute types are: int, double, boolean, String and Date.
Any collection of these attributes is also possible, as well as custom
types.

– Enumerations can be created using:

8

http://MetaDepth.org/
http://MetaDepth.org/papers/TOOLS.pdf
http://MetaDepth.org/Documentation.html
http://MetaDepth.org/Examples.html
https://www.eclipse.org/epsilon/doc/eol/
https://www.eclipse.org/epsilon/doc/eol/
https://atom.io/
http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/assignments/MetaDepth.zip
http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/assignments/MetaDepth.zip
https://MetaDepth.org/tutorial/tutorial.pdf

enum MyEnum {VALUE1, VALUE2, VALUE3};

They must be in the Model-scope and can be compared in EOL as
simple strings on their values.

� The implementation of your operational semantics does not have to be
super efficient. Correctness is the main criterium.

� In your EOL file, you can define methods on types as follows:

operation Source hasWatercraft(): Boolean {

// warning: read the requirements

// before copying this :)

return true;

}

operation Segment hasWatercraft(): Boolean {

return (self.watercraft.isDefined());

}

You can define the same method on different types, and call it in a poly-
morphic fashion. Only at run-time is it checked whether an object actually
has the method you’re trying to call.

� If assignments are failing with Internal error: the value X is not

a Y, first assign the variable to null before performing the assignment.
This is due to type checking.

� In your EOL code, any value/type/object can be printed. This is useful
for debugging.

� Use if (x.isDefined()) to check for null.

� It was discovered (by accident) that using the name “in” for attributes/-
types/instances works in MetaDepth, but it is a reserved keyword in EOL,
causing the parsing of your EOL expressions to fail, so you will have to
use a different name.

� Use context "model name" to change which model the EOL is executed
in.

Acknowledgements

Based on an earlier assignments by Randy Paredis, Simon Van Mierlo, Bentley
Oakes and Claudio Gomes.

9

snk1

snk0

seg1b

seg0b

con

seg0a

seg1a

src0

src1

2 in1

in0

out1

out0rate=1

rate=3

1
3

snk1

snk0

seg1b

seg0b

con

seg0a

seg1a

src0

src1

2 in1

in0

out1

out0rate=1

rate=3

3

snk1

snk0

seg1b

seg0b

con

seg0a

seg1a

src0

src1

2

in1

in0

out1

out0rate=1

rate=3

3

step

step

snk1

snk0

seg1b

seg0b

con

seg0a

seg1a

src0

src1
2

in1

in0

out1

out0rate=1

rate=3

step

4

4

5

4

6

wait=0

wait=2

wait=0

wait=1

wait=0

wait=0

wait=0

wait=2

count=0

count=0

count=1

count=0

count=0

count=1

count=0

count=2

count=0

count=0

count=1

count=0

count=1

count=0

count=2

count=1

Schedule = [snk0, snk1, seg0b, seg1b, con, seg0a, seg1a, src0, src1]

Figure 4: Several consecutive snapshots during the simulation of an example
watercraft network. Note that in this figure, watercraft is identified by numbers
only for didactive purposes — this should not be a feature of your language.

10

	Practical Information
	Requirements
	Abstract Syntax
	Waterway network abstract syntax

	Operational Semantics

	Report
	Useful Links and Tips

