
Assignment 2

Modelling in AToMPM

Joeri Exelmans

joeri.exelmans@uantwerpen.be

1 Practical Information

This assignment will make you familiar with the visual modelling toolAToMPM.
You will learn to create meta-models and abstract and concrete syntaxes for a
domain-specific modelling language (formalism) concerning production systems
(factories).

The different parts of this assignment:

1. Create a new formalism in AToMPM with the create new formalism but-
ton. This will create two empty models in the following files:

� /Formalisms/NAME/NAME.model, the meta-model for your abstract
syntax.

� /Formalisms/NAME/NAME.defaultIcons.model, the meta-model for
your concrete syntax.

Note: Although it should also be possible to manually create a directory
for your new formalism, and create the .model and .defaultIcons.model

files by loading the class diagrams and concrete syntax toolbars, I do not
recommend this; a student who did this was experiencing problems when
creating instances of his concrete syntax.

2. Implement the abstract syntax of your language in AToMPM by editing
the .model file.

3. Enrich the abstract syntax with constraints so that you can check that
every model is well-formed.

4. Implement a concrete syntax, by editing the .defaultIcons.model file,
and generate a modelling environment by compiling the metamodel and
the concrete syntax model. You can work incrementally.

5. Create some waterway network models (instances of your concrete syn-
tax meta-model) that are representative for all the features in your lan-
guage. The requirements for two valid models are specified below, and
there should be a third invalid model to show that your constraints detect
invalid models.

1



6. Write a report that includes a clear explanation of your complete solution
and the modelling choices you made. Also mention possible difficulties
you encountered during the assignment, and how you solved them. Don’t
forget to mention all team members and their student IDs!

This assignment should be completed in groups of two if possible, otherwise
individually is permissible.

Submit your assignment as a zip file (report in pdf + abstract and concrete
syntax models) on Blackboard. If you work in a group, only one person needs
to submit the zip file, while all others only submit the report. Contact Joeri
Exelmans if you experience any issues.

2 Requirements

This section lists the requirements of the production system domain-specific
language. The language requirements are split into two sections: one on abstract
syntax, and one on concrete syntax. Make sure to test each requirement with
test models!

2.1 Abstract Syntax

There are no modifications in this section from Assignment 1.
The abstract syntax of the DSL can be thought of as a set of constraints

that instances of your language must conform to. These include multiplicities
on types, relations between types, and additional constraints.

2.1.1 Waterway network abstract syntax

The abstract syntax of our waterway network-language consists of the following
types:

Watercraft - A manmade “thing” (e.g., boat, ship, drone, ...) that at any
time must be located on exactly one Segment or Confluence.

Segment - A “piece” of waterway. A Segment instance can contain at most
1 Watercraft instance. A Segment has one “out”-connection (that con-
nects to another Segment), and one “in”-connection (that also connects
to another Segment).

Source - A special segment type that only has an “out”. It is a place where new
Watercraft is spontaneously generated. A Source has an “out” connection
to a Segment, onto which it puts generated Watercraft, as we’ll see in the
operational semantics. A Source keeps a counter of how many Watercraft
instances it has generated so far. A Source has a rate, which is a strictly
positive integer parameter, indicating the number of steps to wait before
another Watercraft is generated (this will be explained in more detail in
the section on operational semantics).

2



Sink - A special segment type that only has an “in”. It is a place where
Watercraft is destroyed/consumed. A Sink keeps a counter of how many
Watercraft instances it has consumed so far.

Note: Sources and Sinks cannot contain any Watercraft.

Confluence - A special segment type with two in-connections (in0 and in1)
and two out-connections (out0 and out1). Just like an ordinary segment,
a confluence can contain (at most) 1 Watercraft instance. A Confluence
has a mode, which is either 0 or 1.

We’ll see that, either traffic can flow from in0 to out0, or from in1 to out1,
both not both simultaneously. (Also, traffic can never flow from in0 to
out1 or from in1 to out0.)

Schedule - A total ordering on all the elements (Segments, Sources, Sinks and
Confluences) that make up the waterway network. This ordering will be
used in the operational semantics. For any waterway network, exactly
one Schedule must exist, which defines an ordering on all elements of the
network.

For all of these connections, an “in” must connect to an “out” (and vice-versa):
If an element A’s “out” connects to another element B, then B’s “in” must
connect to A. Further, a segment’s output is not allowed to be connected to the
same segment’s input.

Hint: Introducing additional abstract type(s), may make your solution cleaner.
AToMPM also supports (multiple) inheritance!

2.2 Concrete Syntax

In this assignment, you will have a lot of freedom coming up with your own
notation. The only requirements are that:

� Your notation does not need to be beautiful, but it must be clear and
understandable. Use intuitive icons, colors, ...

� If you download images from the internet, strictly speaking, you should
check the license. For example, flaticon.com requires textual attribution
which can be placed in your report.

Figure 1 shows an example instance of a possible concrete syntax for the
waterway network language.

Further, actions, mappers, and parsers of AToMPM must be used to improve
the user experience of creating models in the waterway network language.

� At a minimum, you should display the values of attributes of your in-
stances in your visual concrete syntax.

� Further, you can write an action that “snaps” a watercraft to a segment,
when it is connected to that segment.

3

flaticon.com


– Formalisms/Pacman has an example of this in the Positionable

class.

Figure 1: An instance of the concrete syntax of a Waterway Network in
AToMPM.

3 For the Next Assignments

The next assignments will continue to use AToMPM, and will build further on
your solution for this assignment. Therefore:

� Spend time becoming familiar with AToMPM concepts and interface.

� Report issues, bugs, annoyances, and suggestions to Joeri Exelmans1.

� Think carefully about your solution, and spend extra time improving the
concrete syntax. To prevent issues in future assignments, make sure you
keep your abstract syntax as close as possible to your solution for the first
assignment.

1As AToMPM is nearing its end of life, these will not be solved, but rather marked as
checks for the next visual meta-modelling tool.

4



– TIP: It must be possible for a Confluence to distinguish between its
two inputs and two outputs. If you simply have two incoming/out-
going links of the same type in AToMPM, they will be unordered,
and therefore they cannot be distinguished. Try to come up with a
simple solution. It should be visible in your concrete syntax which
input is ‘input0’ and which is ‘input1’. (This is lacking inthe example
in figure 1.)

– Don’t forget to define a schedule! (This is also lacking in the exam-
ple in figure 1.) Some suggested ways of assigning an ordering on
segments:

* Add a ‘priority’ integer attribute to every segment.

* Add a ‘higherPriorityThan’ association between segment types,
effectively allowing you to put all your segments into a linked list
that represents the schedule.

� To prepare yourself a bit for the next assignment, look at the AToMPM
documentation on how to use transformations, and if possible, begin ex-
perimenting.

– The next assignment will use transformations to implement the op-
erational semantics of the watercraft network.

4 Report

There are a number of requirements for the report. Above all, I must be able to
read the report and have a clear understanding of all aspects of the assignment,
without having to investigate the model files. I.e., your model files will only be
used as a support for your report, not the other way around!

Specifically, the report must contain:

� A brief outline of how the abstract syntax, concrete syntax, and example
models meet the requirements of the assignment

– This may include metamodels, diagrams, (pseudo-)code, etc. as
needed to provide the essential details of the assignment.

� A discussion of any interesting decisions and assumptions made.

� A discussion of possible improvements to the abstract/concrete syntax.

� A brief description of the constraints present in your languages.

� Three example waterway network models (you are allowed to show the
same models from assignment 1).

– Two valid, one invalid (which doesn’t meet the constraints).

� For each, show:

5



– A figure of the waterway network within AToMPM.

– The results of constraint checking on the invalid waterway network,
and which constraint fails.

5 Useful Links and Tips

� AToMPM main page: https://atompm.github.io/

� Download and code: https://github.com/AToMPM/atompm

� Documentation: https://atompm.readthedocs.io/en/latest/

Acknowledgements

Based on an earlier assignment by Randy Paredis.

6

https://atompm.github.io/
https://github.com/AToMPM/atompm
https://atompm.readthedocs.io/en/latest/

	Practical Information
	Requirements
	Abstract Syntax
	Waterway network abstract syntax

	Concrete Syntax

	For the Next Assignments
	Report
	Useful Links and Tips

