Assignment 4

Translational Semantics (with traceability) in

AToMPM

Joeri Exelmans

joeri.exelmans@uantwerpen.be

1 Practical Information

This assignment will teach you how to implement translational semantics in
visual modelling tool AToMPM. You will apply this to the waterway network
to allow for safety analysis with Petri-Nets (in the next assignment).

The different parts of this assignment:

1.

Build a transformation schedule to generate a Petri-Net alongside the
waterway network, connected by traceability links.

Build a transformation schedule that executes a Petri-Net transition, and
updates the waterway network accordingly.

Create two (simple) waterway network models that are representative for
all the features in your language. Show a few steps of the execution of
these transformations for these models, and create a short video for one.

. Write a report that includes a clear explanation of your complete solution

and the modelling choices you made, as well as an explanation of your
testing process. Also mention possible difficulties you encountered during
the assignment, and how you solved them. Don’t forget to mention all
team members and their student IDs!

This assignment should be completed in groups of two if possible, otherwise
individually is permissible.

Submit your assignment as a zip file (report in pdf + model files) on Black-
board before 14 December 2022, 23:59h'. If you work in a group, only one
person needs to submit the zip file, while all others only submit the report.
Contact Joeri Exelmans if you experience any issues.

1Beware that BlackBoard’s clock may differ slightly from yours.

2 Requirements

This section lists the requirements of the waterway network translation seman-
tics. Make sure to test each requirement with test models!

2.1 Petri-Net Generation

Implement a rule-based transformation that generates a well-formed Petri-Net
model from a waterway network (WN) model. The schedule that is part of
your WN must become part of your PN (i.e., places and transitions). In other
words, the Petri-Net that you generate must enforce the micro-step order that
is defined in your WN schedule.

Use the ‘PNS’ (Petri-Net + Schedule) formalism (download the formalism
here: http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/examples/
PNS.zip from the assignment page). Note that the PNS formalism also allows
capacity-constrained places. Do not generate instances of ‘Scheduled Transition’
(part of ‘PNS’) in this part of the assignment!

e Ensure that this transformation is complete. That is, a well-formed pro-
duction system will produce a well-formed Petri-Net.

e Compared to the previous assignment, there are some simplifications to
the semantics:

— You do not have to limit the number of moves that a single watercraft
can make in a macro-step to one.

— Any segment type (source, segment, sink and confluence) may decide
(non-deterministically) to skip its micro-step, even if a watercraft can
be moved.

— At a confluence, fairness is ignored: an input is chosen non-deterministically.
At a confluence, watercraft are still only allowed to move “straight”
(in other words, watercraft are not free to choose which output they
take).

— The rate of a source is only a restriction on how many watercraft it
can produce over time. For instance, if a source has rate 2, it can
produce no more than n/2 watercraft in n steps. In other words, the
source’s potential to produce watercraft accumulates whenever the
source does not produce watercraft.

— As always, ensure there can be at most one item on every segment or
confluence. You are allowed to use capacity-constrained places from
the 'PNS’ formalism to enforce this.

— Hint: First generate the Petri-Net places for all your segment types.
Afterwards, generate Petri-Net transitions for all connection types.
Finally, you can translate the WN schedule (that specifies the micro-
step ordering) to your Petri-Net.

http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/examples/PNS.zip
http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/examples/PNS.zip

— Hint: Maybe first create a Petri-Net for a WN by hand, in a tool like
TAPAAL, to have an idea of what you want to arrive at, and then
work out the rules.

e Note that inhibitor arcs cannot be used! This is due to the analysis tool
in the next assignment.

e Do not remove your waterway network during this transformation! It is
instead left untouched, co-existing with your Petri-Net. This allows a
visual correspondence between both formalisms.

e Traceability links must be created from waterway network elements and
to the Petri-Net Places and Transitions, such that the transformation in
Section 2.2 can operate on both models at the same time.

— Use the /Formalisms/GenericGraph formalism for traceability links.

— You are allowed (and encouraged) to alter the concrete syntax of
the GenericGraph formalism to show the arrowhead (all links in
AToMPM are directed!), which will help you when creating your
transformation rules. Don’t forget to re-compile your metamodel!

e Places and Transitions must be uniquely named in the Petri-Net model.

— Make sure the important Places/ Transitions can easily refer back to
their segments via their name. For instance, if you create a PN tran-
sition for a segment “Segl” that represents movement of a watercraft
onto the segment, you can call it “EnterSegl”.

e The counters of sources and sinks also have to be represented by Petri-
Net places. Additionally, you have to implement a step counter, that
counts the number of executed macro-steps. We will use these in the next
assignment for analytical purposes.

e Layout considerations do not have to be considered in this transformation.
That is, you may assume that the user will manually move Petri-Net
elements to an appropriate location as they are created.

e Warning: There is a bug in AToMPM where the attributes of the asso-
ciations are not reset to result = True or result = getAttr() when it
is placed in the LHS, RHS, or NAC. You will have to manually change
the action code for all these created associations. If you don’t,
rules will silently fail. Apologies for the inconvenience.

2.2 Executing the Petri-Net

You will now implement a transformation that executes simulaneously the Petri-
Net, and updates the state of your waterway network to reflect the changes in
the Petri-Net.

3

Petri-Nets are non-deterministic. For instance, every segment can choose
whether to execute its micro-step (if it can), or to skip it. Another example
is the confluence: when a watercraft can enter from both inputs, one can be
chosen arbitrarily. When there are multiple enabled transitions, we want
the power to tell AToMPM which one to choose. Therefore, the ‘PNS’
formalism allows the modeler to specify a schedule of transitions to fire.
See the example in /Formalisms/PNS/samples/capConstraint.model.

— Do not confuse the Petri-Net schedule (a sequence of Scheduled Tran-
sition’s) with your WN schedule. Your WN schedule is to be encoded
in your generated Petri-Net, not as a PN schedule. It is only once
you have your Petri-Net, that the PN schedule tells AToMPM which
transitions to fire. See figure 1 for an overview.

The ‘PNS’ formalism already includes a transformation that executes a
modeled sequence of Petri-Net transitions. Every 'run’ of the transfor-
mation executes one transition in the PN schedule, and then selects the
next transition (for the next run). Your job is to embed this Petri-Net
transformation into your own schedule (use the ‘CRule’ construct from
MoTiF) and keep the waterway network ’in sync’ with the Petri-Net.

Report

There are a number of requirements for the report. Above all, the reader must
be able to read the report and have a clear understanding of your solution,
without having to investigate the model files. I.e., your model files will only be
used as a support for your report, not the other way around!

Specifically, the report must contain:

A brief outline of your transformation rules and their schedules, and how
they implement the requirements of the assignment.

A discussion of any interesting decisions made.

A discussion of possible improvements to the rules and transformation
syntax.

Two example models. For each, show:

— Screenshots of at least a few steps of the waterway network during
the generation of the Petri-Net, and its execution. If it helps to
understand what is going on, highlight parts of your figures.

Choose one waterway network and produce a short screen recording of
the Petri-Net execution transformation running and showing interesting
behaviour.

Waterway Network

+ Schedule
part 1 of
transformed into -----------+ a55|gnmgnt:
create this
transformation
Waterway Network
+ Schedule

itraceability links

Petri-Net

Legend

manually constructed
auto-generated

(without schedule)

Petri-Net schedule
(manually constructed)

+

execute first PN transition in PN schedule |
+ update WN state

)
updated WaterWay
Network
(+schedule)

traceability links

updated Petri-Net

Petri-Net schedule
] |:|I ||:| (next transition
(without schedule) highlighted)
L J
hg
execute next PN transition in PN schedule -~~~
+ update WN state
A
r R
updated WaterWay
Network
(+schedule)

itraceability links

updated Petri-Net

Petri-Net schedule
(next transition

(without schedule)

highlighted)

part 2 of
assignment:
create this
“|transformation

Figure 1: Overview of the different transformations that are part of this assign-
ment.

— This video should not be submitted with your assignment (due to a
large file size), but a link to where your video can be downloaded?
should be placed in your report.

— For instance, you can upload it Dropbox, Google Drive, MS Azure,

— You can use OBS (https://obsproject.com/) or any other screen
recording software.

— Example for last year’s assignment: https://msdl.uantwerpen.be/
cloud/public/d467£2

4 Useful Links and Tips

e AToMPM main page: https://atompm.github.io/

Download and code: https://github.com/AToMPM/atompm

Documentation: https://atompm.readthedocs.io/en/latest/

This assignment will be used as an entry point for the next assignment.
Therefore, it is important you finish this entire assignment.

Acknowledgements

Based on earlier assignments by Randy Paredis and Bentley Oakes.

2Must be downloadable for archival purposes.

https://obsproject.com/
https://msdl.uantwerpen.be/cloud/public/d467f2
https://msdl.uantwerpen.be/cloud/public/d467f2
https://atompm.github.io/
https://github.com/AToMPM/atompm
https://atompm.readthedocs.io/en/latest/

	Practical Information
	Requirements
	Petri-Net Generation
	Executing the Petri-Net

	Report
	Useful Links and Tips

