
Assignment 5
Code Generation in AToMPM

Joeri Exelmans
joeri.exelmans@uantwerpen.be

1 Practical Information
The goal of this assignment is to generate PythonPDDEVS-based code from a
Waterway Network, in the visual modelling tool AToMPM.

This assignment does NOT build on the previous MDE assignments. You
will be given the “WN2” (Waterway Network 2) formalism, which is based on
this year’s DEVS assignment. However, this assignment depends on a solution
to (a part of) the MoSIS DEVS assignment.

The different parts of this assignment:
1. Create a simple Waterway Network model in AToMPM (or use the in-

cluded example model).

2. Export it to MetaDepth.

3. Then, in an iterative manner:

(a) Create an initial version of your EGL transformation, or extend/fix
the previous version.

(b) Run your EGL transformation on the exported MetaDepth model.
(c) Observe the output, see if things need to be corrected, etc.

4. In the end, given that you have solved the DEVS assignment, you should
be able to run the generated Python code with PythonPDEVS.

5. Write a report that includes a clear explanation of your complete solution
and the modelling/analysis choices you made, as well as an explanation
of your testing process. Also mention possible difficulties you encountered
during the assignment, and how you solved them.

This assignment should be completed in groups of two if possible, otherwise
individually is permissible.

Submit your assignment as a zip file (report in pdf + model files) on Black-
board before 3 January 2023, 23:59h1. If you work in a group, only one
person needs to submit the zip file, while all others only submit the report.
Contact Joeri Exelmans if you experience any issues.

1Beware that BlackBoard’s clock may differ slightly from yours.

1



2 Getting Started
2.1 WN2 formalism
Download the WN2 formalism : http://msdl.uantwerpen.be/people/hv/
teaching/MSBDesign/WN2.zip, and place it under AToMPM/Formalisms/WN2.

2.2 MetaDepth Setup
As a starting point, download the file from: http://msdl.uantwerpen.be/
people/hv/teaching/MSBDesign/exported_to_md.zip and place the contents
in your AToMPM/exported to md folder. It contains the following files:

WN2.mdepth The AS meta-model of the WN2 formalism, exported to MetaDepth,
and slightly patched (so don’t overwrite this file by re-exporting the meta-
model!)

run.mcd The MetaDepth command file containing the necessary commands
for running the model-to-text transformation.

main.egl A wrapper around gen.egl. Called by run.mcd.

gen.egl This is the file that contains the model-to-text transformation (in the
EGL language). This is the file that you are supposed to edit.

2.3 Exporting a WN2 model to MetaDepth
1. Open the included example model /Formalisms/WN2/example.model. You

can also do this later with your own WN2 model.

2. Load the metaDepth toolbar (inside of the /Toolbars/MetaDepth/ folder,
it is called Export.buttons.model ). This toolbar has two buttons: one
for exporting models (M), and one for exporting metamodels (MM).

2. Export your model using the (M)-button. The following dialog will show
up:

3. Fill in “exported” (without quotes). This will create a file AToMPM/exported to md/exported.mdepth.

2

http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/WN2.zip
http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/WN2.zip
http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/exported_to_md.zip
http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/exported_to_md.zip


2.4 Running the model-to-text transformation
1. Run metaDepth.jar in the AToMPM/exported to md/exported.mdepth di-

rectory.

2. In MetaDepth, type the command “run run” (without quotes) to run the
transformation. This will output a exported.py file, which is the result
of your model-to-text transformation.

3 Requirements
You must implement a model-to-text transformation in gen.egl such that it
produces a Python module that contains one CoupledDEVS component that
represents the topology of any WN2 model that was used as input. Your gener-
ated CoupledDEVS component will create instances of the following Coupled-
DEVS or AtomicDEVS components, and connect them correctly:

• ControlTower

• Generator

• Dock

• Anchorpoint

• Lock

• Canal

• Waterway

• Confluence

• Sea

The implementation of these components is part of the DEVS assignment.
You must therefore complete (that part of) the DEVS assignment in order to
complete this assignment. It is required that your generated CoupledDEVS is
fully executable.

The precise implementation of all components in the DEVS assignment is
somewhat open: you have to choose the constructor parameters of every com-
ponent, and you have to choose which input/output ports every component has.
This means your model-to-text transformation will be specific to your solution
to the DEVS assignment.

Please include everything (i.e., all Python code) needed to run
your generated CoupledDEVS when submitting your solution.

3



4 AToMPM workaround
As you should know by now, AToMPM cannot distinguish between different in-
coming or outgoing links of a node in a model: all incoming/outgoing links are
an unordered set. However, in your DEVS components, you may want to assign
port numbers to specific connections. Therefore, the included gen.egl file con-
tains some initialization code that assigns port numbers to every Confluence’s
in/out connection. Furthermore, for every Confluence, routing information is
also generated for finding the shortest path to every Dock (and this routing
information is stored in the form of a mapping from Docks to the Confluence’s
port numbers). You may also want to use this information in your generated
CoupledDEVS.

5 Report
There are a number of requirements for the report. Above all, I must be able to
read the report and have a clear understanding of all aspects of the assignment,
without having to investigate the model or transformation files. I.e., your model
files will only be used as a support for your report, not the other way around!

Specifically, the report must contain:

• The complete code of your model transformation.

• Two WN2 model files that you created (i.e., not the included example).
For each model, show:

– A screenshot of the model in AToMPM
– Your generated CoupledDEVS (also as code in a separate file)

• Your generated CoupledDEVS for the included example model of the Port
of Antwerp.

• A discussion of any interesting decisions made and possible improvements
to any model or language.

6 Useful Links and Tips
• AToMPM main page: https://atompm.github.io/

• Download and code: https://github.com/AToMPM/atompm

• Documentation: https://atompm.readthedocs.io/en/latest/

Acknowledgements
Based on earlier assignments by Randy Paredis and Bentley Oakes.

4

https://atompm.github.io/
https://github.com/AToMPM/atompm
https://atompm.readthedocs.io/en/latest/

	Practical Information
	Getting Started
	WN2 formalism
	MetaDepth Setup
	Exporting a WN2 model to MetaDepth
	Running the model-to-text transformation

	Requirements
	AToMPM workaround
	Report
	Useful Links and Tips

