Modelling Languages: (mostly) Concrete (Visual) Syntax

Hans Vangheluwe

http://msdl.cs.mcgill.ca/

The Structure of Modeling Languages

Modelling Languages/Formalisms Syntax and Semantics

Concrete Formalism F

Modelling Languages/Formalisms
Syntax and Semantics

Textual Languages
"this sentence is very short"

- Individual letters in an alphabet
- Combined into words
- Combined into sentences in a language
- Valid letters in words specified by regular expressions
- Valid words in a language specified by a grammar
- letters/words are combined by "is to the right of"

The Spoofax Language Workbench

Rules for Declarative Specification of Languages and IDEs

Lennart C. L. Kats
Delft University of Technology
l.c.I.kats@tudelft.nl

Eelco Visser
Delft University of Technology
visser@acm.org

EntityLang.sdf \mathbb{K}

*\% Grammar for the EntityLang language
\%\% By default, based on an example "entities" syntax

```
example.ent }\mathbb{Z
i Emodule example
    // Example "EntityLang" program
Ontity User {
        name : String
        password : String
        homepage : URL
    }
entity BlogPosting {
    poster : User
    body : String
    }
-entity URL {
        location : String
    }
```

syntax-directed editor (textual concrete syntax)

syntax-directed editor

(visual concrete syntax)

Visual Languages

Journal of Visual Languages and Computing (2002) 13, 573-600
doi:10.1006/S1045-926X(02)00025-3 available online at http://www.idealibrary.com on IDE $\mathbf{L}^{\text {L }}$

A Classification Framework to Support the Design of Visual Languages

G. Costagliola*, A. Delucia \dagger, S. Orefice \ddagger and G. Polese*

Plex

Graph

Connection Types

(a)

(b)

(d)

Iconic

Visual Language Classes

Hybrid Languages

Syntax-directed Visual Editors: model behaviour

Syntax-directed Visual Editors: model behaviour

Generate Syntax-directed Visual Editors

```
7% ModelEditor
```


MTpre_Contents: Association
protected.formalisms.Rule.MTpre_Pattern
protected.formalisms.Rule.MTpre_Pattern
protected.formalisms.Rule.MTpre_Element

MTp\&st_Association: Association
proteqted.formalisms.Rule.MTpost_Element
--> protected.formalisms.Rule.MTpost_El\&ment
N

Syntax-directed Visual Editors: freehand (early stages of multi-domain project)

Different Media:

Gestural Interaction, Sound, ...

The "Physics" of Notations: Towards a Scientific Basis for Constructing Visual Notations in Software Engineering

Daniel L. Moody, Member, IEEE

Introduction

- Visual notations pre-date textual ones
- Visual notations are important for Modelling and Software Engineering
- Humans are excellent pattern recognizers
- Need cognitively efficient and effective notations.

Cognitive effectiveness = speed, ease and accuracy with which a representation can be processed by the human mind

Introduction/Rationale

Visual notations are often introduced without underlying theory or rationale

Many visual notations for same concepts.

No rigorous way to compare effectiveness and hence no clear design goal.

Maryam M. Maleki, Robert F. Woodbury, Rhys Goldstein, Simon Breslav, Azam Khan. Designing DEVS visual interfaces for end-user programmers. Simulation 91(8): 715-734 (2015)

Communication Theory

Encoding: 8 visual variables to (graphically) encode information

Decoding

Appropriate notations » offload some of the burden from cognitive to perceptual

Note: "dual channel theory":
auditory/verbal channel and visual/pictorial channel are processed in parallel
Richard E. Mayer, Roxana Moreno. Nine Ways to Reduce Cognitive Load in Multimedia Learning. Educational Psychologist, 38(1), 43-5. 2003.

Principles for Designing Efficient and Effective Visual Notations

Semiotic Clarity (semiotics = study of signs and sign processes)

Perceptual Discriminability

(a) Divers programming Aqua2 during pool tri- (b) A diver programming Aqua2 during an HRI als. trial held at a lake in central Québec.

(c) Example of command acknowledgement given on the LED screen of the Aqua2 robot during field trials.

Junaed Sattar, Gregory Dudek. Reducing Uncertainty in Human-Robot Interaction: A Cost Analysis Approach. ISER 2010: 81-95.

Perceptual Discriminability

should be easy to distinguish visual symbols
ability to distinguish is determined by visual distance larger visual distance » faster, more accurate recognition

- number of visual variables on which they differ and the magnitude of the differences
- shape is the main visual variable

Perceptual Discriminability

Software Engineering notations mostly use rectangle variants
Use redundant visual encoding to increase distance (e.g., textual + visual)

Semantic Transparency

The meaning of a symbol can be inferred from its appearance (intuitive)

Symbols can be:

Semantic Transparency: semantically immediate symbols

Semantic Transparency

Sequence/Causality	Subclass/Subset
$\mathrm{A} \rightarrow \mathrm{B}$	Hierarchy
Intersection	B
A	B

Semantic Transparency

The meaning of a symbol can be inferred from its appearance (intuitive)
Symbols can be:

- Semantically Immediate
- Semantically Opaque

Software Engineering notations are usually abstract (non-intuitive)

Semantic Transparency

The meaning of a symbol can be inferred from its appearance (intuitive)

Symbols can be:

- Semantically Immediate
- Semantically Opaque
- Semantically Perverse

Domain-specific icons and visual arrangement should be intuitive

Complexity management (\# elements in diagram » cognitive overload)

Modularization/Hierarchy

Cognitive Integration (different notations)

- Conceptual integration (coherent mental model)
- Enable navigation and transition between notations

Visual Expressiveness

Number of visual variables used (UML, mostly shape, no colour)
8 degrees of visual freedom ($0=$ non-visual $-8=$ visually saturated $)$

Visual Expressiveness
Different visual variables have different capacity to encode information

Variable	Power	Capacity
Horizontal position (x)	Interval	$10-15$
Vertical position (y)	Interval	$10-15$
Size	Interval	20
Brightness	Ordinal	$6-7$
Colour	Nominal	$7-10$
Texture	Nominal	$2-5$
Shape	Nominal	Unlimited
Orientation	Nominal	4

Dual Encoding
Combine Textual and Visual

Supplement rather than duplicate (e.g., multiplicity values)

Graphical encoding
 Textual encoding

Dual coding (graphics+ text)
\square
$0 . .1$ 3.. 15
$0 . .1$
$3 . .15$

Reinforce meaning

Graphic Economy

- Not too many symbols. If many, provide legend
- Limit on human discrimination capability (6 levels per variable)
- Upper limit on graphic complexity

How?

Cognitive Fit
Adapt choice of visual notation to

- Task
- Audience (novices vs. experts)

Adaptation may be dynamic ("learn" about Task/User proficiency)
Representation medium matters

Interactions among principles

