
Creating a traffic DSL in MetaDepth

Joeri Exelmans

joeri.exelmans@uantwerpen.be

1 Practical Information

In this course, you will create your own Domain-Specific Languages (DSLs) to
simulate and analyze (car) traffic. The goal of this first assignment is to create
a meta-model for your DSL, to create instances of this meta-model and to verify
conformance between (instance) model and meta-model. You will also specify
the operational semantics of this language. You will use the textual modeling
tool MetaDepth, and its action + constraint language EOL (Epsilon Object
Language).

The different parts of this assignment:

1. Implement the abstract syntax for your language(s) in MetaDepth.

2. Enrich the abstract syntax with constraints (using EOL) so that you can
check that every model is well-formed.

3. Create some instance models that are representative for all the features in
your language. The requirements for two conforming models are specified
below, and there should be a third non-conforming model to show that
your constraints detect non-conforming models.

4. Write operational semantics (using EOL) that, given a conforming model,
simulates one “step” (in the operational/simulation semantics), producing
a new conforming model.

5. Write a report that includes a clear explanation of your complete solution
and the modeling choices you made. Also mention possible difficulties
you encountered during the assignment, and how you solved them. Don’t
forget to mention all team members and their student IDs!

This assignment should be completed in groups of two if possible. Working
individually is also allowed.

Submit your assignment as a zip file (report in pdf + MetaDepth files for
abstract syntax and operational semantics) via Blackboard before 24 October
2023, 23:59h1. If you work in a group, only one person needs to submit the
zip file, while the other person only submits a text file containing the name of
the partner. Contact Joeri Exelmans if you experience any issues.

1Beware that BlackBoard’s clock may differ slightly from yours.

1

2 Requirements

You will develop a domain-specific modeling language for road networks and car
traffic. Your language will capture topological information (“what is connected
to what?”) about roads, and the cars that navigate on them.

You will first develop the abstract syntax of your language, followed by the
operational semantics.

2.1 Abstract Syntax

The abstract syntax of the DSL can be thought of as a set of constraints that
instances of your language must conform to. These include multiplicities on
types, relations between types, and additional constraints (to compensate for
lack of expressiveness of multiplicities).

The abstract syntax of our road network language consists of the following
types:

• RoadSegment - A uni-directional piece of road. It can contain at most 1
car. A Segment has one output (that connects to the next segment), and
one input (that connects to the previous segment).

• Split - Like a RoadSegment, but with two outputs. A car can move via
either output to one of the two connecting segments.

• Join - Like a RoadSegment, but with two inputs. A car can move from
either input .

• Generator - A source for new cars. It only has one output, that connects
to a RoadSegment. A generator itself cannot contain cars. It models input
to the System under Study from the Environment.

• Collector - Where cars disappear. It only has one input, that connects to
a RoadSegment. A collector itself cannot contain cars. It models output
from the System under Study from the Environment.

• Connection - A connection from an output (of a Generator, RoadSeg-
ment, Join or Split), to an input (of a Collector, RoadSegment, Split, or
Join).

• Car - A car.

• Schedule - Defines a sequence of steps to be made, encoded as an ordered
sequence of Connections. The behavior encoded in a step will be explained
in the section on Operational Semantics.

Hint: Introducing additional abstract type(s) may make your solution cleaner.
MetaDepth supports multiple inheritance!

2

2.1.1 Constraints

Further, you should model the following constraints:

• A segment’s output cannot connect directly to its own input. Cycles are
allowed however, but must consist of at least two elements.

• There must be at least one Generator and at least one Collector.

• There must always be exactly one Schedule.

• Every segment must be reachable from a Generator.

• From every segment, a Collector must be reachable.

2.2 Operational Semantics

The operational semantics consist of a step function, which takes one valid model
and transforms it to a next valid model. Roughly speaking, during a step, one
car may move along a Connection from one elements to another. A move is
only possible if: (1) the previous element has a Car available, and (2) the next
element has enough remaining capacity. Availability is defined as follows:

• Generator Always has a car available.

• Collector Never has a car available.

• RoadSegment, Split, Join have a car available if there is currently a
car on it.

Capacity is defined as follows:

• Generator Never has capacity (capacity 0).

• Collector Always has capacity (infinite capacity).

• RoadSegment, Split, Join have capacity 1. Only if there is currently
no car on it, there is remaining capacity.

The schedule defines along which Connections how cars will be moved. The
step function always pops the last Connection from the Schedule, and attempts
to move a car along it. If the Schedule is empty, a step has no effect. Hence, in
this assignment, the operational semantics are deterministic.

Note: MetaDepth seems to give errors when removing an element from an
ordered collection. You can use this workaround: leave the Schedule unchanged,
and instead keep the index of the next Connection to be stepped (like in the
FSA example).

In the implementation of the operational semantics in EOL, please include
some print statements to trace the behavior.

3

Note: MetaDepth does not automatically verify if your model still con-
forms to your meta-model after executing a step. You should manually instruct
MetaDepth to perform this check after every step.

Figure 1 and Figure 2 show example models and their execution traces in a
concrete visual syntax.

3 Report

You will write a report containing:

• An explanation of your workflow, and motivations for decisions made.

• An overview of your solution:

– A Class Diagram of your abstract syntax meta-model.

Feel free to use DrawIO (https://draw.io/), PlantUML (https:
//plantuml.com/), MS Paint, or a scan of a sketch on paper (as
long as it is readable!)

– The full code of the constraints written.

• Three example models of your choice:

– Two conforming, one non-conforming (i.e., violates at least one of
the constraints).

– For each model, show:

∗ A small, graphical diagram in the style of Figures 1 and 2.

∗ For the conforming models, the textual output of a number of
execution steps in MetaDepth.

∗ For the non-conforming model, the results of constraint checking.
Explain which constraint(s) fail(s) and why.

4 Grading

• (25 %) abstract syntax meta-model

• (25 %) extra constraints

• (25 %) operational semantics

• (25 %) report

4

https://draw.io/
https://plantuml.com/
https://plantuml.com/

C1R C2RG

C3

C4

S

C5

R

C6

R

C7J CC0

Schedule = [C0, C4, C7, C2, C5]

step

C1R C2RG

C3

C4

S

C5

R

C6

R

C7J CC0

Schedule = [C0, C4, C7, C2]

step

C1R C2RG

C3

C4

S

C5

R

C6

R

C7J CC0

Schedule = [C0, C4, C7]

step

C1R C2RG

C3

C4

S

C5

R

C6

R

C7J CC0

Schedule = [C0, C4]

step

C1R C2RG

C3

C4

S

C5

R

C6

R

C7J CC0

Schedule = [C0]

step

C1R C2RG

C3

C4

S

C5

R

C6

R

C7J CC0

Schedule = []

Figure 1: An example model and its execution trace. G: Generator, R: Road-
Segment, S: Split, J: Join, C: Collector, C[0-7]: Connection

5

C4

C1

S

C2

J
C3

C5

S

C0

J C6 GC7G

C

C

Schedule = [C5, C7, C2, C6]

C4

C1

S

C2

J
C3

C5

S

C0

J C6 GC7G

C

C

Schedule = [C5, C7, C2]

step
(no change)

C4

C1

S

C2

J
C3

C5

S

C0

J C6 GC7G

C

C

Schedule = [C5, C7]

step

C4

C1

S

C2

J
C3

C5

S

C0

J C6 GC7G

C

C

Schedule = [C5]

step

step

C4

C1

S

C2

J
C3

C5

S

C0

J C6 GC7G

C

C

Schedule = [C5]

Figure 2: Another example.

6

outs

Transitionouts

A : State

ins

Transitionins

B :State

outs ins

T :Transition

Model FSA {
 Node State {
 outs: State[*]
 ins: State[*];
 // ...
 }
 Edge Transition(State.outs, State.ins) {
 // ^ source ^ target
 // ...
 }
}

FSA example {
 State A{}
 State B{}
 Transition T(A,B) {}
}

Figure 3: Using Edges in MetaDepth

5 Useful Links and Tips

• Main resources for this assignment:

– These examples: http://msdl.uantwerpen.be/people/hv/teaching/
MSBDesign/examples/mdepthExamples202324.zip

The examples are:

∗ fsa - A simple finite state automaton. Demonstrates abstract
syntax, constraints, and operational semantics.

∗ fsa-edges - Same as ‘fsa’, but uses ‘Edge’ for Transitions, leading
to much more compact code. TIP: Use ‘Edge’ for Connections!
Figure 3 shows an example of using Edges, and the relations that
are created.

Note: (21 October) MetaDepth appears to not work correctly
when combining Edges and inheritance. Therefore, I recommend
you to use Nodes (instead of Edges) for Connections.

∗ abstract - Demonstrates usage of abstract types, and various
EOL features.

The examples demonstrate all MetaDepth and EOL features neces-
sary to complete this assignment!

– EOL documentation: https://www.eclipse.org/epsilon/doc/eol/

• Extra tips:

– VS Code syntax highlighting package for EOL: http://msdl.uantwerpen.
be/people/hv/teaching/MSBDesign/mdepth-0.0.1.vsix

– Very useful for this assignment: In your EOL file, you can define
methods on types as follows:

7

http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/examples/mdepthExamples202324.zip
http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/examples/mdepthExamples202324.zip
https://www.eclipse.org/epsilon/doc/eol/
http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/mdepth-0.0.1.vsix
http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/mdepth-0.0.1.vsix

operation Generator hasCarAvailable(): Boolean {

return true;

}

operation RoadSegment hasCarAvailable(): Boolean {

return (self.car.isDefined());

}

You can define the same method on different types. MetaDepth
support polymorphism through dynamic binding, meaning that it
will look up the right method to call at run-time.

– Nodes can be marked abstract to prevent users from instantiating
them.

– Attributes can be marked as an identifier (using {id}) to ensure
global uniqueness. This is similar to a database’s ID. An example:
name: String{id};

– Collection attributes can be marked unique to prevent duplicate
items and ordered to keep the order of the elements.

items: Item[*] {unique, ordered};

See the EOL documentation for the precise meaning of these anno-
tations.

– Builtin attribute types are: int, double, boolean, String and Date.
Any collection of these attributes is also possible, as well as custom
types.

– If assignments are failing with Internal error: the value X is

not a Y, first assign the variable to null before performing the as-
signment. This is due to type checking.

– In your EOL code, any value/type/object can be printed. This is
useful for debugging.

– Use if (x.isDefined()) to check for null.

– Using the name “in” for attributes/types/instances works in MetaDepth,
but it is a reserved keyword in EOL, causing the parsing of your EOL
expressions to fail, so you cannot use this name.

– Use context "model name" to change which model the EOL is exe-
cuted in.

– Use an .mdc file to save time

∗ See slide 47 of https://MetaDepth.org/tutorial/tutorial.
pdf

• Additional MetaDepth resources:

8

https://MetaDepth.org/tutorial/tutorial.pdf
https://MetaDepth.org/tutorial/tutorial.pdf

– Tutorial I gave in class (based on the FSA example): http://msdl.
uantwerpen.be/people/hv/teaching/MSBDesign/tutorial202324.

zip

– Main page: http://MetaDepth.org/

– Official examples: http://MetaDepth.org/Examples.html

– Official documentation: http://MetaDepth.org/Documentation.html

– TOOLS paper: http://MetaDepth.org/papers/TOOLS.pdf

– A package for the Atom text editor (https://atom.io/), that allows
a very basic syntax highlighting for both EOL and MetaDepth is avail-
able: http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/
assignments/MetaDepth.zip

Any updates and bugfixes made to this package are allowed, and free
to be mentioned in your submission/report or via email.

Alternatively, you can use JavaScript syntax highlighting for EOL,
and it will look OK-ish.

Acknowledgements

Based on an earlier assignments by Randy Paredis, Simon Van Mierlo, Bentley
Oakes and Claudio Gomes.

9

http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/tutorial202324.zip
http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/tutorial202324.zip
http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/tutorial202324.zip
http://MetaDepth.org/
http://MetaDepth.org/Examples.html
http://MetaDepth.org/Documentation.html
http://MetaDepth.org/papers/TOOLS.pdf
https://atom.io/
http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/assignments/MetaDepth.zip
http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/assignments/MetaDepth.zip

	Practical Information
	Requirements
	Abstract Syntax
	Constraints

	Operational Semantics

	Report
	Grading
	Useful Links and Tips

