
Assignment 3

Operational Semantics in AToMPM

Joeri Exelmans

joeri.exelmans@uantwerpen.be

1 Practical Information

In this assignment, we create an operational semantics for our Traffic DSL
by means of rule-based model transformations, in AToMPM. The starting
point for this assignment is the AToMPM formalism (Abstract Syntax (AS) +
Concrete Syntax (CS)) you created in the previous assignment.

The different parts of this assignment:

1. RAMify your traffic DSL, resulting in a new pattern language for your
DSL.

(a) Use the compile an abstract syntax model (...) into a pattern meta-
model button.

2. Build the transformation rules, which update your traffic models.

• Create a new rule with the create new rule button. Then load your
pattern language using the load a pattern metamodel button.

3. Create a transformation schedule (not to be confused with the ‘Sched-
ule’ object that is part of our DSL) that specifies in which order your
transformation rules should fire.

• Create a schedule with the create new transformation button.

4. Create a conforming model (according to constraints of previous as-
signments), that is sufficiently interesting (see below for requirements),
that demonstrates the operational semantics. Record a video showing the
transformations happening.

5. Write a report.

This assignment should be completed in groups of two if possible, otherwise
individually is permissible.

Submit your assignment as a ZIP file (report in PDF + everything needed to
run your solution in AToMPM: your AS, CS definition, all transformation rule

1



models and your schedule model) on Blackboard before 28 November 2023,
23:59h1. If you work in a group, only one person submits the ZIP file, and
the other person only submits a text file containing the name of the partner.
Contact Joeri Exelmans if you experience any issues.

Note: You have three weeks to complete this assignment. However, 19-24
November I will be attending a workshop abroad, and will have very little time
to help you out. So start early!

2 Requirements

This section lists the requirements of the traffic DSL.

2.1 AS/CS modification(s)

The requirements for AS and CS remain the same as in the previous assignment.
However, it is possible that you want to make some small changes to your AS
(and therefore also CS). For instance, you could change the inheritance relations
between your classes a bit, to allow for fewer and/or simpler transformation
rules. Make sure you write down any changes made (so you can mention them
in your report).

Tip: Every time you make a change to your AS or CS, have to:

• Re-compile AS and/or CS

• Re-create all your models

• RAMify again

• Re-create all your transformation rules

• (The transformation schedule will not have to be re-created.)

Therefore, it is recommended to create all transformation rules and a transfor-
mation schedule on paper first!

1Blackboard’s clock

2



Tip: There are at least two ways to implement your Schedule class:

1. Connections have name-attributes. Your Schedule is a list of Connection-
names. With each step (operational semantics), you pop a Connection
from the Schedule.

2. Your Schedule is a linked list of Connection objects. You have a Schedule
object that points to the head of this list. With each step, head is updated
to point to the next Connection. To make this work, a Connection must
be an Object (instance of a Class), rather than a Link (instance of an
Association).

2.2 Operational Semantics

You must create a transformation schedule (consisting of a bunch of rules) that
executes one step. The meaning of a ‘step’ remains identical to assignment 1
(MetaDepth):

During a step, one car may move along a Connection from one el-
ements to another. A move is only possible if: (1) the previous
element has a Car available, and (2) the next element has enough
remaining capacity. Availability is defined as follows:

• Generator Always has a car available.

• Collector Never has a car available.

• RoadSegment, Split, Join have a car available if there is
currently a car on it.

Capacity is defined as follows:

• Generator Never has capacity (capacity 0).

• Collector Always has capacity (infinite capacity).

• RoadSegment, Split, Join have capacity 1. Only if there is
currently no car on it, there is remaining capacity.

The schedule defines a sequence of Connections along which cars will
be moved. The step function always pops the last Connection from
the Schedule, and attempts to move a car along it. If the Schedule
is empty, a step has no effect.

Put all rules in the /Formalisms/<YourTrafficDSL>/OperationalSemantics
directory. This directory already contains an empty schedule T OperationalSemantics.model.
You can add your schedule to this file.

Tip: To move a Car along a Connection, you can remove the Car from the
source segment and place the Car on the target segment in two different rules
(of course, after having checked that a move is possible).

3



Tip: To give you some clue, my own solution consists of 4 Q-Rules and 3
A-Rules.

3 Example model

To test your transformation rules, you probably want to begin testing them on
small models first, and incrementally work your way up to more complex ones.
You do not have to submit these small models.

However, as part of your solution, you must create and submit one exam-
ple model that demonstrates the operational semantics. This model must be
sufficiently interesting:

• It must contain all element types: Generator, RoadSegment, Split, Join,
Collector.

• It must contain at least 10 elements total.

• The schedule must initially contain at least 10 steps (Connections).

Create a screen recording of the execution of the operational semantics and
include a link to it (YouTube, Vimeo, Google Drive, Dropbox, . . . ) in your
report. You can use OBS (https://obsproject.com/) or any other screen
recording software.

4 Report

You will write a report, containing:

• An explanation of your workflow, and motivations for decisions made.

• An overview of your solution:

– A screenshot of your abstract syntax meta-model, even if it is identi-
cal to assignment 2. I will need this to understand the transformation
rules.

– A screenshot of your model transformation schedule, and an expla-
nation of how it works (what are the steps, etc).

– A screenshot of every model transformation rule, complemented with
all the (Python) code written (pre- and post-conditions), and a short
explanation of what the rule does.

• A link to a screen recording of the simulation of your example traffic
model.

About 1-2 pages of text (not including figures, code, screenshots) will do.

4

https://obsproject.com/


5 Grading

• (40 %) Transformation rules, with correct use of:

– NAC

– LHS

– RHS

– Python pre- and post-conditions

– Abstract classes in NAC, LHS, RHS

• (30 %) Transformation schedule

– Correctness of schedule (and rules)

• (30 %) Report

– Explains workflow and difficulties encountered?

– Can I easily understand your solution?

– Video

6 Useful Links and Tips

• Main resources:

– AToMPMmodel transformation tutorial: https://atompm.readthedocs.
io/en/latest/modelling_transformation.html

– FSA semantics example: http://msdl.uantwerpen.be/people/hv/
teaching/MSBDesign/examples/MyFSA-with-semantics.zip

• Use AToMPM version 0.10.0rc3. (Version 0.9.0 is fine but doesn’t work
with Python >= 3.10)

– Docker container: https://github.com/AToMPM/atompm/pkgs/container/
atompm

– Linux/Mac users can download the source code: https://github.

com/AToMPM/atompm/archive/refs/tags/v0.10.0rc3.tar.gz

∗ Install NodeJS and NPM

∗ Then run npm i in the source directory to install all JavaScript
dependencies.

∗ Install the following Python packages:

· python-socketio

· igraph

· requests

∗ Then, run node httpwsd.js

5

https://atompm.readthedocs.io/en/latest/modelling_transformation.html
https://atompm.readthedocs.io/en/latest/modelling_transformation.html
http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/examples/MyFSA-with-semantics.zip
http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/examples/MyFSA-with-semantics.zip
https://github.com/AToMPM/atompm/pkgs/container/atompm
https://github.com/AToMPM/atompm/pkgs/container/atompm
https://github.com/AToMPM/atompm/archive/refs/tags/v0.10.0rc3.tar.gz
https://github.com/AToMPM/atompm/archive/refs/tags/v0.10.0rc3.tar.gz


∗ In another terminal, start the Python model transformation back-
end: python3 mt/main.py

∗ Navigate to http://localhost:8124/atompm

– Windows users can try the “portable” version, which includes all de-
pendencies: https://github.com/AToMPM/atompm/releases/download/
v0.10.0rc3/atompm-portable.zip

• AToMPM Model Transformation tutorial (covers everything): https://

atompm.readthedocs.io/en/latest/modelling_transformation.html

– Supported datatypes (for attributes): https://atompm.readthedocs.
io/en/latest/new_language.html#attributes

∗ e.g., to create a list of integers, use list<int>

∗ One type of bug that can be hard to track down is when you set
the default value of an integer attribute to "0" (which is a JSON
string literal), but it should be 0 (i.e., JSON number literal).
Same for booleans.

• AToMPM peculiarities:

– If a rule does not use a NAC, then delete the entire NAC block!

– Last year, we had some problems with the use of SRule. Use ARule
instead. It is possible to solve this assignment with only ARule and
QRule.

– After executing a transformation, if you want to execute a different
transformation, open your model again in a new window first.

– AS constraints (previous assignment) are written in JavaScript. Model
transformation conditions and actions are written in Python!

∗ You can debug your rules by using print()-statements. They will
be printed in the terminal that runs the mt/main.py script.

– Expect some crashes, so save often!

∗ If AToMPM crashes, make sure to kill all the node processes
before starting it again!

Acknowledgements

Based on an earlier assignments by Randy Paredis and Bentley Oakes.

6

http://localhost:8124/atompm
https://github.com/AToMPM/atompm/releases/download/v0.10.0rc3/atompm-portable.zip
https://github.com/AToMPM/atompm/releases/download/v0.10.0rc3/atompm-portable.zip
https://atompm.readthedocs.io/en/latest/modelling_transformation.html
https://atompm.readthedocs.io/en/latest/modelling_transformation.html
https://atompm.readthedocs.io/en/latest/new_language.html#attributes
https://atompm.readthedocs.io/en/latest/new_language.html#attributes

	Practical Information
	Requirements
	AS/CS modification(s)
	Operational Semantics

	Example model
	Report
	Grading
	Useful Links and Tips

