
Assignment 4

Translational Semantics in AToMPM

Joeri Exelmans

joeri.exelmans@uantwerpen.be

1 Practical Information

In this assignment, we implement a translational semantics for our Traffic DSL,
again by means of rule-based model transformations, still using AToMPM. We
map our Traffic DSL onto Petri-Nets.

Overview of this assignment:

1. Build a set of transformation rules and a transformation schedule to gen-
erate a Petri-Net alongside the traffic network, connected by traceability
links.

2. Build a transformation schedule that executes a Petri-Net transition, and
updates the traffic network accordingly.

3. Record a video showing (1) generation of Petri-Net, and (2) execution of
the Petri-Net.

4. Write a report.

This assignment should be completed in groups of two if possible, otherwise
individually is permissible.

Submit your assignment as a ZIP file (report in PDF + everything needed to
run your solution in AToMPM: your AS, CS definition, all transformation rule
models and your schedule model) on Blackboard before 12 December 2023,
23:59h1. If you work in a group, only one person submits the ZIP file, and
the other person only submits a text file containing the name of the partner.
Contact Joeri Exelmans if you experience any issues.

2 Requirements

2.1 AS/CS modification(s)

The requirements for AS and CS remain the same as in the previous assignments.
At this point, it is unlikely that you will have to make changes to your AS/CS.
Nevertheless, if you make changes to AS/CS, please mention this in your report.

1Blackboard’s clock

1



Remember: Every time you make a change to your AS or CS, have to:

• Re-compile AS and/or CS

• Re-create all your models

• RAMify again

• Re-create all your transformation rules

• (The transformation schedule will not have to be re-created.)

2.2 Petri-Net Generation

Implement a rule-based transformation that generates a Petri-Net model from
a traffic network model.

• Use the ‘PNS’ (Petri-Net + Schedule) formalism (included in ZIP file, see
end of document).

• The behavior of the generated Petri-Net must match the behavior of the
original traffic network, as if it were executed via the operational semantics
(from previous assignment).

– You also translate the traffic network “Schedule” to a Petri-Net-
schedule (i.e., a sequence of Petri-Net transitions to fire).

• You must create traceability links from elements of your traffic network
model to your generated Petri-Net model. There are two reasons for this:

1. You can use traceability links to generate your Petri-Net incremen-
tally (e.g., first generate the places, then the transitions). With trace-
ability links, you can match a partially generated Petri-Net.

2. To keep your traffic network in sync with your Petri-Net, during
Petri-Net execution.

Create traceability links as follows:

– When creating a model transformation rule, load the pattern meta-
model of /Formalisms/GenericGraph.

– Now, you can create traceability links between any elements of any
formalism(s).

– Figure 1 shows an example of a rule that uses traceability links. This
rule is included in the examples ZIP file.

2



Figure 1: A transformation rule that creates a (capacity constrained) Petri-Net
place for an FSA state, connected via a traceability link. The NAC ensures that
only one Petri-Net place can be created per FSA state.

Beware: Even though traceability links do not show an arrowheads,
their direction matters!! All links in AToMPM have a direction.
To save yourself a headache, always consistently create traceability
links in the same direction, for instance, from your traffic network
and to your Petri-Net.

• Transitions must be uniquely named in the generated Petri-Net model.

• Layout does not have to be considered in the transformations. That is,
you may assume that the user will manually move Petri-Net elements to
an appropriate location after they are created.

2.3 Petri-Net Execution

You will now implement a transformation that executes a Petri-Net transition,
and updates the state of your traffic network to reflect the changes in the Petri-
Net. For instance, if a RoadSegment is represented by a Petri-Net place, and a
Car is represented by a token, then if a token is removed from a place, then a
Car should also disappear from the corresponding RoadSegment.

It is not your job to implement an operational semantics for Petri-Nets from
scratch. The ‘PNS’ formalism already includes a transformation schedule that
executes one Petri-Net transition. You can ‘call’ this transformation schedule
from your own schedule, using a CRule.

3



3 Screen recording

Record a video of Petri-Net generation and its subsequent execution, on a single
traffic network model, that contains all features of your language.

4 Report

You will write a report, containing:

• A (brief) explanation of your workflow, and motivations for decisions
made.

• An overview of your solution:

– A screenshot of your abstract syntax meta-model, even if it is identi-
cal to assignment 2. I will need this to understand the transformation
rules.

– A screenshot of both transformation schedules (PN generation and
execution), and an explanation of how it works (what are the steps,
etc).

– A screenshot of every model transformation rule, complemented with
all the (Python) code written (pre- and post-conditions), and a short
explanation of what the rule does.

• A link to the screen recording.

5 Grading

• (45 %) Petri-Net generation:

– Transformation rules

– Transformation schedule

• (30 %) Petri-Net execution

– Transformation rules

– Transformation schedule

• (25 %) Report

– Explains workflow and difficulties encountered?

– Can I easily understand your solution?

– Video

4



6 Useful Links and Tips

• Download the starting point ZIP file: http://msdl.uantwerpen.be/people/
hv/teaching/MSBDesign/examples/TransSemStartingPoint.zip, which
includes:

– ‘PNS’ formalism: Petri-Nets with Schedule. Also includes capacity-
constrained places.

– Example translational semantics for ‘MyFSA’ formalism. Note: the
example is incomplete and only generates Petri-Net places, not the
transitions! (The full example would be giving away too much of the
solution...)

• Main resources:

– AToMPMmodel transformation tutorial: https://atompm.readthedocs.
io/en/latest/modelling_transformation.html

• Use AToMPM version 0.10.0rc3. (Version 0.9.0 is fine but doesn’t work
with Python >= 3.10)

– Docker container: https://github.com/AToMPM/atompm/pkgs/container/
atompm

– Linux/Mac users can download the source code: https://github.

com/AToMPM/atompm/archive/refs/tags/v0.10.0rc3.tar.gz

∗ Install NodeJS and NPM

∗ Then run npm i in the source directory to install all JavaScript
dependencies.

∗ Install the following Python packages:

· python-socketio

· igraph

· requests

∗ Then, run node httpwsd.js

∗ In another terminal, start the Python model transformation back-
end: python3 mt/main.py

∗ Navigate to http://localhost:8124/atompm

– Windows users can try the “portable” version, which includes all de-
pendencies: https://github.com/AToMPM/atompm/releases/download/
v0.10.0rc3/atompm-portable.zip

• AToMPM peculiarities:

– If a rule does not use a NAC, then delete the entire NAC block!

– The default values of link attributes in NAC/LHS (result = True)
or RHS (result = getAttr()) are not set correctly. You should
manually set them correctly.

5

http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/examples/TransSemStartingPoint.zip
http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/examples/TransSemStartingPoint.zip
https://atompm.readthedocs.io/en/latest/modelling_transformation.html
https://atompm.readthedocs.io/en/latest/modelling_transformation.html
https://github.com/AToMPM/atompm/pkgs/container/atompm
https://github.com/AToMPM/atompm/pkgs/container/atompm
https://github.com/AToMPM/atompm/archive/refs/tags/v0.10.0rc3.tar.gz
https://github.com/AToMPM/atompm/archive/refs/tags/v0.10.0rc3.tar.gz
http://localhost:8124/atompm
https://github.com/AToMPM/atompm/releases/download/v0.10.0rc3/atompm-portable.zip
https://github.com/AToMPM/atompm/releases/download/v0.10.0rc3/atompm-portable.zip


– Last year, we had some problems with the use of SRule. Use ARule
instead. QRule works fine. FRule also seems to work.

– After executing a transformation, if you want to execute a different
transformation, open your model again in a new window first.

– Make sure all elements in your NAC, LHS and RHS are actually
contained by the NAC/LHS/RHS shape. To check if everything is
properly contained, move the NAC/LHS/RHS shape a little bit, and
see if the contained elements also move.

– One type of bug that can be hard to track down is when you set the
default value of an integer attribute to "0" (which is a JSON string
literal), but it should be 0 (i.e., JSON number literal). Same for
booleans.

∗ Supported datatypes (for attributes): https://atompm.readthedocs.
io/en/latest/new_language.html#attributes

∗ e.g., to create a list of integers, use list<int>

– Model transformation conditions and actions are written in Python!

∗ You can debug your rules by using print()-statements. They will
be printed in the terminal that runs the mt/main.py script.

∗ Please try to do a bit of debugging before you tell me “it’s not
working”.

– Expect some crashes, so save often!

∗ If AToMPM crashes, make sure to kill all the node processes
before starting it again!

Acknowledgements

Based on an earlier assignments by Randy Paredis and Bentley Oakes.

6

https://atompm.readthedocs.io/en/latest/new_language.html#attributes
https://atompm.readthedocs.io/en/latest/new_language.html#attributes

	Practical Information
	Requirements
	AS/CS modification(s)
	Petri-Net Generation
	Petri-Net Execution

	Screen recording
	Report
	Grading
	Useful Links and Tips

