
©Chenliang Sun1.1Statecharts Based GUI Design

Statecharts Based GUI DesignStatecharts Based GUI Design

Chenliang Sun
csun1@cs.mcgill.ca
School of Computer Science
McGill University

March 5, 2003

©Chenliang Sun1.2Statecharts Based GUI Design

OverviewOverview

■ What’s GUI ?
■ Why GUI ?
■ Why Statechart Based GUI Design ?
■ What’s Statechart ?
■ How ?
■ Case Study
■ Testing and Coding
■ Conclusion
■ References

©Chenliang Sun1.3Statecharts Based GUI Design

What’s GUIWhat’s GUI

■ User Interface
* Command Line Interface
* Graphical User Interface (GUI)
* Hybrid User Interface

■ UI: ensure a user can only supply valid events to a UI and that
correct actions are executed in response to each event.

©Chenliang Sun1.4Statecharts Based GUI Design

Why GUIWhy GUI

■ Command line interfaces are difficult to use because they
require users to learn a command language in order to interact
with the system.

■ It will be impossible for user that don’t know the command
language to interact with the system. e.g. Unix shell, SQL, not
good for casual or novice users

■ GUI: user does not need to know command language.
★ Individual UI objects, such as buttons, scrollbars and windows are

combined to represent entities, such as file systems or database
tables.

©Chenliang Sun1.5Statecharts Based GUI Design

Why GUIWhy GUI

■ A good GUI will allow a user with no previous knowledge of the
interface to carry out useful and meaningful dialogue with system.

■ In short:
GUI allows: Direct manipulation of objects via “Pointing and
Clicking” replace much of the typing of the arcane command.

©Chenliang Sun1.6Statecharts Based GUI Design

Why Statecharts Based Design?Why Statecharts Based Design?

■ GUIs are intrinsically far more complicated than command line
interfaces because a user can have several partially completed
dialog that can be suspended and resumed at any time.

■ GUI must ensure that a user can only perform valid operations.
e.g. Rename => name of file not blank

■ GUIs contain more bugs and are usually more difficult to test and
enhance than other types of code in a system

■ ……
■ But we have a lot of powerful and sophistic tools !?

©Chenliang Sun1.7Statecharts Based GUI Design

Why Statecharts Based Design?Why Statecharts Based Design?

■ Traditional GUI Design:
1. event-action paradigm

Idea: each event supplied by a user determines which actions are
executed in response to that event
- could not accurately describe the structure of UI code. The
actions that execute in response to user event (UE) affected by the
context in which they occur. i.e. the UI objects that appear in an
application must be coordinated to work together as a whole.

make use of global information

©Chenliang Sun1.8Statecharts Based GUI Design

Why Statecharts Based Design?Why Statecharts Based Design?

■ Bottom-up approach

©Chenliang Sun1.9Statecharts Based GUI Design

Why Statecharts Based Design?Why Statecharts Based Design?

■ Traditional GUIs design: Bottom-up approach
(We will explain it in more details later)

1. The code can be difficult to understand and review thoroughly
2. Difficult to test in a systematic and thorough way
3. Contain bugs even after extensive testing and fixing
4. Be difficult to enhance without introducing unwanted side-effects
5. ……

©Chenliang Sun1.10Statecharts Based GUI Design

Why Statecharts Based Design?Why Statecharts Based Design?
2. event-state-action paradigm
■ Idea:
initialization
while (!quit) {

enable selection of commands objects
wait for user selection
switch (selection) {

Process selection to complete command
or process completed command,

Update model and screen as needed
}

}

©Chenliang Sun1.11Statecharts Based GUI Design

Why Statecharts Based Design?Why Statecharts Based Design?

■ FSA

©Chenliang Sun1.12Statecharts Based GUI Design

Why Statecharts Based Design?Why Statecharts Based Design?

■ The event that a user supplies will cause the software to
move from one state to another.

■ The states define the context in which an event occur
■ It’s the natural of all direct manipulation UI
■ But

- large number of states and events arrows for large,
complex system
- The state transition diagram was large and difficult to
read, to draw, to change
- not scalable
- non-user friendly

©Chenliang Sun1.13Statecharts Based GUI Design

Why Statecharts Based Design?Why Statecharts Based Design?

■ Using Statecharts:
★ much more powerful and expressive state based language
★ Raise UI development from a coding task to a software design task

+ can be written quickly and easily. Even more:

AUTOMATICALLY CODE GENERATION !!!

+ easy to test using white box techniques
+ easy to enhance repeatedly over the lifetime of a system
+ can be modified without introducing unwanted side-effects
+ can be regression tested without the need for full re-test

©Chenliang Sun1.14Statecharts Based GUI Design

Why Statecharts Based Design?Why Statecharts Based Design?

Before answer this question, we first should answer
another question: What’s Statechart ?

©Chenliang Sun1.15Statecharts Based GUI Design

What’s Statechart?What’s Statechart?

■ Proposed by David Harel (1987)
Statecharts: A visual formalism for complex systems

■ Provide a very rich and expressive notations that allows complex
system to be specified concisely and at different levels of
abstraction
★ Hierarchy –Systems designed as a hierarchy are generally easier to

understand because the structure of the system is not obscured by
irrelevant details

■ The history mechanism is used to remember the last state that
the statechart was in within a particular set of states. Thus on
returning to the set of states, the most recently visited of states in
the set will be entered.

■ A statechart is faster to create and easier to understand than the
words for the same information.

©Chenliang Sun1.16Statecharts Based GUI Design

What’s Statechart?What’s Statechart?

■ It is easy to achieve a complete specification of a UI using
statechart because it is easy to spot all the scenarios that need
to be specified

■ A user interface can be decomposed into modules and each
module can be specified independently of each other

©Chenliang Sun1.17Statecharts Based GUI Design

How to design GUI based on Statecharts?How to design GUI based on Statecharts?

■ There is no standard recipe to develop software, including GUI

■ Depend on the problem / requirement AND experience of
programmer

■ Following method is a suggestion:
Design heuristics

©Chenliang Sun1.18Statecharts Based GUI Design

HowHow

■ 1. Identify the high-level statechart
★ The first step in most designs is to identify the high-level states in

the design. These states usually corresponding to screens (Canvas)
that a user can navigate between.

★ It is good to know which user events will cause the UI to move
between different canvases early in the design process.

★ This allows the UI to be divided into parts that can be constructed by
different developer.

★ Problem related to integrating screen can be avoided

Hint: Design one screen at a time, but start to understand how
two screens interact reasonably early in the process

©Chenliang Sun1.19Statecharts Based GUI Design

How ?How ?

■ 2 Identify screen rules
★ Write down all the items in or associated with a screen, buttons,

menu items, text items, radio buttons, scrolling lists, keyboard
shortcuts, etc

★ Identify whether the behavior or appearance of an item is constant
or whether it varies

★ Identify behaviors of items
e.g. when they are available to a user
scroll list delete, sub window for detail
How about no element in the list?

Let’s talk it in more detail

©Chenliang Sun1.20Statecharts Based GUI Design

How ?How ?

■ 2 Identify screen rules
(1) Entry and exit rules

what user events cause a screen to be entered or exited? Start
application? Close application?

(2) Identify any modes
A mode is a state that the software can enter and where the
effect of a user event changes depending on the mode
e.g.. Drawing package: pencil, spray or paint brush?

read-only? Read / write?
(3) Identify the screen items that have varying behavior

enable/disable, visible/invisible, color
(4) Identify the screen items that have constant behavior

©Chenliang Sun1.21Statecharts Based GUI Design

HowHow
■ 3 Identify states: converting screen rules to a statechart.

★ Draw a statechart that defines the required behavior of each
screen item as specified in the screen rules and ensure the
screen items work together as a whole

★ Think it in an abstract way, i.e. identify the states first. This
builds a solid framework on which events and actions can
easily be added.

★ Note:
Any type of user interface can be specified in terms of
events, conditions, states and actions

©Chenliang Sun1.22Statecharts Based GUI Design

How ?How ?

■ 4. Consolidate related behavior
Look for common events and conditions that will cause a number
of screen items to change state. What do these states
represent? Can related screen items be brought together into the
same states?
ex. Cut, copy, paste can be performed by menu items, icon
buttons, and key press, then these related functions can be
controlled by the same part of the statechart

■ Separate unrelated behavior
use depth extensively to structure a statechart

©Chenliang Sun1.23Statecharts Based GUI Design

How ?How ?

■ 5. Keep dependencies out of independent concurrent parts
★ The use of dependencies weakens a design and should therefore

only be used to as a last resort
★ Dependencies make testing more difficult
★ Dependencies also make the long-term maintainability of software

more difficult because changing one concurrent part may cause an
unwanted side-effect in another part

Unavoidable dependencies?
Consider merging them

©Chenliang Sun1.24Statecharts Based GUI Design

HowHow
■ 6 Synchronize concurrent parts with simultaneous events

★ It is possible for a single user event to cause simultaneous
state transitions in concurrent parts

e.g. delete an item from a list by clicking a delete button, this
event may cause a transition which results in the action of
deleting the item from the list. The same delete event may
also cause a simultaneous transition in a concurrent part to
a state which an undo button is enabled

Hint: when designing simultaneous events, typically only one
event should cause actions to occur. The other events
should be used to synchronize the concurrent parts with the
primary event arrow..

©Chenliang Sun1.25Statecharts Based GUI Design

HowHow
■ 7 Be wary of actions on states

★ Actions on states are like global variables. They cab be very
powerful, but they also have potential to cause problems.

★ Hint:
use states to control the attributes of UI items rather than
executing actions. All actions should be associated with
events.

©Chenliang Sun1.26Statecharts Based GUI Design

How ?How ?
■ 8. Avoid event arrows that transcend many levels in a

state hierarchy
★ To understand the statechart without having to understand

the details of lower-level states

©Chenliang Sun1.27Statecharts Based GUI Design

How ?How ?
■ 9. Naming states

★ Each state should be given a meaningful name. If you
cannot think of a name that conveys what the state
represents then this may suggest there is a problem with the
design.

★ If the meaning of the state cannot be identified in the design
process then how will it be understood during the
maintenance of the system?

★ Each state must explicitly represent something

©Chenliang Sun1.28Statecharts Based GUI Design

HowHow
■ 10. the route to a state should be irrelevant

★ It should never be assumed that a previous state has
defined an attribute of a UI object and also does not need to
be defined again in current state

©Chenliang Sun1.29Statecharts Based GUI Design

How ?How ?
■ 11. Avoid convoluted conditions

★ The conditions associated with an event can sometimes be
simplified by using priorities.

©Chenliang Sun1.30Statecharts Based GUI Design

Case Study : CD PlayerCase Study : CD Player

High-level Requirements:

http://moncs.cs.mcgill.ca/people/hv/teaching/MS/assignments/assig
nment3/

Overview of the user interface screen

©Chenliang Sun1.31Statecharts Based GUI Design

Case Study : CD PlayerCase Study : CD Player
■ Screen Rules

★ Entry and exit events:
The screen can be entered by starting the application
The screen is exited when Close button is clicked
There is no explicit Quit button by requirement

★ Modes
When in the CD Stopped state, the Stop button shall be
disabled.
When in CD playing state, the button shows “Pause”
But when in pause state, the button shows “Play” (not
required)

©Chenliang Sun1.32Statecharts Based GUI Design

Case Study : CD PlayerCase Study : CD Player
■ Screen Rules

★ Items with varying behavior:
When in the CD Paused state, the values in the Time and
Track fields will be displayed initially and then after one
second will be hidden (blank). After another second, they
will be displayed again. This displaying/hiding cycle will
continue as long as the system is in the CD Paused state
Display text will change according to states

★ Items with constant behavior:
the Close button is always enabled
the Eject button is always enabled. i.e. At any time the user
can eject the CD player
When in the CD Stopped state, the Time field shall display
00:00 and the Track field shall display [track 1].

©Chenliang Sun1.33Statecharts Based GUI Design

Case Study : CD PlayerCase Study : CD Player

■ The high-level statechart

©Chenliang Sun1.34Statecharts Based GUI Design

Case Study : CD PlayerCase Study : CD Player

■ Convert screen rules to a
statechart

©Chenliang Sun1.35Statecharts Based GUI Design

©Chenliang Sun1.36Statecharts Based GUI Design

Case Study : CD PlayerCase Study : CD Player

■ Synchronize concurrent parts with simultaneous events statechart

©Chenliang Sun1.37Statecharts Based GUI Design

©Chenliang Sun1.38Statecharts Based GUI Design

Case Study : CD PlayerCase Study : CD Player

■ Keep dependencies out of independent concurrent parts
■ Be wary of actions on states
■ Avoid events that transcend many levels in a state hierarchy
■ Naming states
■ ……

©Chenliang Sun1.39Statecharts Based GUI Design

Coding a statechartCoding a statechart

Coding a statechart is a simple process. There are 4 main tasks
which should be carried out in the following order:

■ Create the user interface objects (ideally this should be done by an
interaction designer)

■ Create state variables
■ Create the state procedures
■ Implement the state transitions defined in the event-action tables of the

statechart

©Chenliang Sun1.40Statecharts Based GUI Design

Testing StatechartsTesting Statecharts

■ Test to find errors in the design and the implementation
■ The state transitions should be made visible during testing
■ Check the action carefully
■ Check the state carefully
■ Check for dead states
■ Ensure events that are not supposed to be possible, really

cannot happen

©Chenliang Sun1.41Statecharts Based GUI Design

ConclusionConclusion

■ Statecharts provide much more powerful and expressive
state based language, which is much more concise and
accurate than natural language

■ Statechart based design raise UI development from a coding
task to a software design task

■ Code from statecharts can be written quickly and easily. Even
allows
AUTOMATICALLY CODE GENERATION !

■ easy to test using white box techniques
■ …….
■ Interaction Object Graphs (IOGs) are an extension of

statecharts, and are designed to specify the details of UI
widgets. For example, IOGs allow to define new Interface
objects without laboriously coding. But that is beyond this
presentation.

©Chenliang Sun1.42Statecharts Based GUI Design

ReferencesReferences

■ Ian Horrocks, Constructing the User Interface with Statecharts, Addison-
Wesley, 1998

■ Hans Vangheluwe, Modeling and Simulation course lecture notes, School
of Computer Science, McGill University, 2002

■ Carr, D., Interaction Object Graphs: An Executable Graphical
Notation for Specifying User Interfaces, Formal Methods for
Computer-Human Interaction, P. Palanque and F. Paterno', editors, ISBN
3-540-76158-6, Springer-Verlag, 141-156, Nov. 1997.

