
Modelica – An Object-Oriented Language
for Physical System Modeling

by

Steven Xu

Feb 19, 2003

Overview

• The Modelica design was initiated by Hilding Elmqvist in
Sept. 1996

• Has been designed by the developers of some OO
modeling languages

• In Feb 2000, Modelica Association, a non-profit, non-
governmental organization, was founded for further
development, promotion and application of Modelica
languages

• Website: http://www.modelica.org

Overview

• Modelica is a freely available, object-oriented language for
modeling of large, complex, and heterogeneous physical
system. [1]

• Suited for multi-domain modeling

• Models in Modelica are mathematically described by
DAEs (Deferential Algebraic Equations)

• Supports non-causal, hybrid, and hierarchical modeling

Overview

• Library of basic models in different domains

• Supports both high-level modeling by composition and

detailed library component modeling by equations

Basic Language Elements [2]

• Basic components: Real, Interger, Boolean and String

• Structured components

• Component arrays, to handle real matrices, arrays of sub-
models etc

• Equations and/or algorithms(assignment statements)

• Connections

• Functions

Example: Electrical Types

type Time = Real(quantity="Time", unit="s");

type Voltage = Real(quantity="Voltage",
unit="V");

type Current = Real(quantity="Current",
unit="A");

Classes for reuse of knowledge

• In Modelica, the basic structuring element is a class;

model, type, connector, block, function, package,

record, etc are restricted classes

• Modelica supports “interface” for components that have

common properties (partial model). This facility is similar

to inheritance in other OO languages.

Example: a connector

connector Pin "pin of an electric component"

Voltage v "Potential at the pin";

flow Current i "Current flowing into the pin";

end Pin;

• A connection connect(Pin1, Pin2), connects the two pins
such that they form one node

• This implies two equations:
Pin1.v = Pin2.v

Pin1.i + Pin2.i = 0

Example: a partial model

• An electrical port

partial model OnePort “Superclass of Components with
two electrical pins p and n"

Voltage v "Voltage drop between p and n";

Current i "Current flowing from p to n";

Pin p;

Pin n;

equation

v = p.v - n.v;

0 = p.i + n.i;

i = p.i;

end OnePort;

Example: a resistor

model Resistor "Ideal linear electrical resistor"

extends OnePort;

parameter Real R(unit=“Ohm”)

equation

R*i = v; “Ohm’s Law”

end Resistor;

Example: a capacitor

model Capacitor "Ideal electrical Capacitor"

extends OnePort;

parameter real C(unit=“F”)

equation

C*der(v) = i;

end Capacitor;

Example: a simple circuit
model circuit

Resistor R1(R=10);

Capacitor C(C=0.01);
Resistor R2(R=100);

Inductor L(L=0.1);
VsourceAC AC;

Ground G;
equation

connect(AC.p, R1.p);
connect(R1.n, C.p);

connect(C.n, AC.n);
connect(R1.p, R2.p);

connect(R2.n, L.p);

connect(L.n, C.n);
connect(AC.n, G.p);

end circuit;

Hybrid Models

• Modelica can be use for mixed continuous and discrete
models

• Discontinuous Models

if-then-else expressions allow modeling of phenomena in
different operating regions. It supports discontinuities.

eg. y = if Time > 100 then a else b

Hybrid Models

• The actions to be performed at events are specified by a
when-statement

ie. when condition then

equations

end when

• The equations are activated instantaneously when the
condition becomes true

Dymola: a commercial tool

• Dymola is a commercial tool developed by Dynasim AB in
Sweden.

• Dymola has a Modelica translator which is able to perform
all necessary symbolic transformations for large systems
(> 100 000 equations) as well as for real time applications.
A graphical editor for model editing and browsing, as well
as a simulation environment are included

How Dymola works…[4]

Non-causal models [6]

• Connections in Modelica implies a set of equations which
are in a non-causal form

eg. x + y + z = 0 Equation 1

x + 3z + u = 0 Equation 2

z – u - 16 = 0 Equation 3

u - 5 = 0 Equation 4

Causality assignment [6]

Causality assignment [6]

x + y + z = 0 Equation 1

x + 3z + u = 0 Equation 2

z – u - 16 = 0 Equation 3

u - 5 = 0 Equation 4

Thus can be rewritten as the following causal form

y = -x – z Equation 1

x = -3z – u Equation 2

z = u + 16 Equation 3

u = 5 Equation 4

Sorting equations

• Equations need be sorted to allow an algorithm to calculate
the variables sequentially.

• Dependency graph of the previous example

eg. to solve ‘z’, ‘u’ has to be calculated first

xy uz

Sorting result

u = 5 Equation 4

z = u + 16 Equation 3

x = -3z – u Equation 2

y = -x – z Equation 1

• Now this set of equations can be solved sequentially

• Equations can be sorted using graph algorithms

Equations can not be sorted

• If variables are interdependent, then equations can not be
sorted, ie. the dependency graph is no longer acyclic

• For example

x = y + 10

y = x + z

z = 5

the dependency graph is cyclic

y

x

z

May be solved in another way…

• In some physical systems, many of the equations that
appear are constant coefficient linear equations.

• In some cases, this set of equations may be solved, either
in numerical or symbolic form

• Cramer’s Rule…

Demo…

• This is the system to be modeled

References

[1] Overview article of Modelica. Available at:
http://www.modelica.org/

[2] Modelica Tutorial, version 1.4. Available at:
http://www.modelica.org/documents.shtml

[3] EcosimPro Mathematical Algorithms

[4] Dymola User Manual.

[5] Introduction to Physical Modeling with Modelica.
Michael Tiller. 2001

[6] Object-Oriented Modeling and Simulation of Physical
System. Hans Vangheluwe. 2001

