

ASP.NET MVC Web-Tier

Introduction

Goal
This Technology Accelerator™ uses Codagen Architect to map a UML platform-independent
model (PIM) into the web-tier of a web application following a MVC approach that is targeted
toward ASP.NET.

Compatibility
This Codagen Technology Accelerator™ requires Codagen Architect Version 3.0, Service
Release 1.

Overview
ASP.NET is a part of Microsoft.NET platform and is used to create web applications. It provides
the environment and all the necessary support classes to run applications that can render
themselves on down-level or up-level browsers, maintain state between sessions (even within a
web farm), and more. ASP.NET does not dictate how an application should be built.

Using the UML model (PIM) as input, this Technology Accelerator™ will create a web application
framework that uses ASP.NET. The scope of the Technology Accelerator™ is the presentation
tier of a web application. The business and data tiers are outside the scope and are assumed to
be created separately.

To use industry practices and diminish development effort as well as maintain separation of
concerns, we have used the Model-View-Controller (MVC) architectural pattern within the web
presentation tier.

The MVC web presentation tier will delegate to the business tier through two facades. These
facades encapsulate the entire business tier through the view exposed by the business entities
present in the PIM. These business entities do not represent the actual business tier but rather
the view of the business tier as needed by the presentation tier to accomplish actions invoked by
the user and return meaningful information. As long as the two facades cooperate using the data
and actions exposed in the business entities, connection to any business tier is possible.

Figure 1 displays a high-level activity diagram of an interaction between a user and a web page
built by the Technology Accelerator™.

Page 1 of 20

Technology Accelerator™: ASP.NET MVC Web-Tier

Page 2 of 20

Send
Request

Receive
Reply

PreProcess
Page

PostProcess Page

Render Page

Perform PostBack
Action

[PostBack]

Verify Action Outcome
[!PostBack]

Construct Necessary
Business Entities

Perform
Action

[Redirect to next page]

[else]

Business TierWeb TierWeb Client

Figure 1. High-Level Activity Diagram of a Web Client Interaction with a Web Page

Technology Accelerator™: ASP.NET MVC Web-Tier

Application Model
This section takes a black-box approach: it describes the project’s expected input (PIM) and the
produced output—the platform-specific model (PSM). The focus is on the “what.”

Platform-Independent Model

ShoppingCart

<<Action>> ConfirmCheckout()
<<Action>> AddItem()

<<Action>> RemoveItem()
<<Action>> ChangeItemQuantity()

<<Action>> RemoveAllItems()
<<Action>> Checkout()

(from businesslayer)

Order

ClientName : String
ClientAddressStreet : String
ClientAddressCity : String

ClientAddressState : String
ClientAddressCountry : String

ClientAddressZIP : String
ClientEmail : String

(from businesslayer)

LineItem

Price : Decimal
Quantity : Integer

(from businesslayer)

Item

Code : String
Description : String
ImageURI : String
Price : Decimal

(from businesslayer)

Inventory

<<Action>> RetrieveAllItems()

(from businesslayer)

+lineItems
0..*0..*

+lineItems

1..*1..*

+item

11

+items
0..*0..*

Figure 2. Business Analysis Class Diagram

Page 3 of 20

Technology Accelerator™: ASP.NET MVC Web-Tier

Template
title : String = "Default Title"

<<Web Page Template>>

Order

ClientName : String
ClientAddressStreet : String
ClientAddressCity : String

ClientAddressState : String
ClientAddressCountry : String

ClientAddressZIP : String
ClientEmail : String

(from businesslayer)

OrderConfirmationPage
title : String = "Order Confirmed"

<<Web Page>>

1+order 1

CheckoutPage
title : String = "Check Out"
ClientName : String
ClientAddressStreet : String
ClientAddressCity : String
ClientAddressState : String
ClientAddressCountry : String
ClientAddressZIP : String
ClientEmail : String

<<Web Page>>

ShoppingCart
(from businesslayer)

1
+cart

1

ShoppingCartPage
title : String = "Your Shopping Cart"

<<Web Page>>

1
+cart
1

Footer
<<Web Page Section>>

Header
<<Web Page Section>>Body

<<Web Page Section>>

1
+footer

1
1

+header
1

1+body 1

ItemDetailPage
title : String = "Product Details"

<<Web Page>>

Item

Code : String
Description : String
ImageURI : String
Price : Decimal

(from businesslayer)

1+item 1

Inventory

<<Action>> RetrieveAllItems()

(from businesslayer)

0..*

+items

0..*

CatalogPage
title : String = "Product Catalog"

<<Web Page>>

0..1

+inventory

0..1

Figure 3. Web Page Class Diagram

Page 4 of 20

Technology Accelerator™: ASP.NET MVC Web-Tier

ShoppingCartPage

ChangeItemQuantity ^ShoppingCart.ChangeItemQuantity
RemoveItem ^ShoppingCart.RemoveItem

RemoveAllItems ^ShoppingCart.RemoveAllItems

CatalogPage
ReturnToShoppingCart

AddItem ŜhoppingCart.AddItem

OrderConfirmationPage

ReturnToShoppingCart

ItemDetailPageReturnToShoppingCart

CheckoutPage

ViewCatalog

ViewItemDetail

Checkout ^ShoppingCart.Checkout

Confirm ^ShoppingCart.ConfirmCheckout

Cancel

[canContinue]

[else]
VewAllItems Înventory.RetrieveAllItems

Figure 4. Web Page Navigation Activity Diagram

UML Model Characteristics
This section lists the characteristics that any UML model must possess to qualify as a PIM for this
Technology Accelerator™.

The model must contain three distinct diagram types:
• The Business Analysis Class Diagram () represents an abstraction of the business

domain entities required by the web application. As an example, this model would be a first
step toward designing a “façade” to permit the web application to use a legacy database
system.

Figure 2

o Each operation of a business entity represents an action that the web application will
perform on the actual business data.

• The Web Page Class Diagram () represents the web pages in the web application

along with the required business entities.
Figure 3

Figure 3

o Each web page in the application is represented as a class stereotyped as “Web
Page.”

o Web page sections that are common to multiple web pages can be represented as a
class stereotyped as “Web Page Section.” Each “Web Page” that uses a “Web Page
Section” must indicate this relation by an association relationship.

o If the web pages that are presented to the user are composed of common web
sections, you must create a “common” class that is associated to the common web
sections and then have the necessary web pages derive from the newly created
class (“Template” in).

o Each web page that displays business entity-related information can indicate this
dependency in the diagram with an association relationship between the web page
and the business entity from the Business Analysis Class Diagram.

o Each web page form field is modeled either from an attribute of the web page class
or from a business entity associated with the web page.

Page 5 of 20

Technology Accelerator™: ASP.NET MVC Web-Tier

Page 6 of 20

Technology Accelerator™: ASP.NET MVC Web-Tier

Page 7 of 20

• The Web Page Navigation Activity Diagram () represents the possible web page
navigations in the web application.

Figure 4

o Each “Web Page” class in the Web Page Class Diagram () must be
represented by an activity in the activity diagram.

Figure 3

o Each transition between web pages (activities) must indicate the request (event) that
initiates this transition and, possibly, the “send event” required by the web application
for the web page transition. In addition, each “send event” must correspond to an
“Action” operation in the Business Analysis Class Diagram.

o Each transition may also contain a guard condition to support conditional transitions
between web pages (using the “branch” entity for multiple transitions that differ only
in the guard condition). The guard condition uses either the current state of the web
application or the result of the “send event,” as we assume that all web activities are
performed currently on the server side. (This utilization of the guard condition
combined with the send event does not respect the standard semantics of UML
transitions—the conditional navigation issue requires further exploration.)

Architecture Specification
The following table lists the properties and the associated UML model elements defined in the
“webApplication.csf” architecture specification file.

Layer/Issue/Property UML

Element
Description

A Layer Describes the layer.
An Issue Describes the issue.

A Property Class Describes the property, including default
value.

Presentation Issues related to presentation layer.
Page Navigation Properties related to page navigation.

isNavigation StateMachine True for any state machine that represents
web page navigation. All other state
machines are ignored for the purposes of
generating navigation code.

Page Composition Properties related to the make-up of pages.
isPageParameter Association

Attribute
Indicates that the association or attribute is a
replacement parameter for a page template.
For an attribute, the attribute name is the
parameter name and the initial value is the
replacement string. For an association, the
target role name is the parameter name and
the target class is the Web Page Section to
be inserted. When used in a Web Page
Template instead of a Web Page, the
attribute or association defines default
values that may be overridden by Web
Pages that use the template.

isPageSection Class Indicates that the class is a Web Page
Section.

isPage Class Indicates that the class is a Web Page. Note
that a Web Page Section named "body" is
automatically generated for each Web Page.

isPageTemplate Class Indicates that the class is a Web Page
Template. Templates define the layout of

Technology Accelerator™: ASP.NET MVC Web-Tier

Page 8 of 20

Web Pages and contain parameters that can
be replaced by specific strings or Web Page
Sections for each Web Page.

isPageTemplateTitle Attribute Indicates that the attribute represents the
page title. Used only in the page template
class to indicate which parameter(s) should
be inserted into the web page title.

isDefaultTemplate Class Indicates that the template is the default
template for all web pages.

isBodySection Class Indicates a page section that serves as a
placeholder in the template for the web page
body. This section will not be generated as a
JSP. Instead, each Web Page class will
generate a page section that will be inserted
into the template at the point occupied by
this section in the template. A body section
serves only to define two things—the "key"
that identifies the body section in the
template, and "order" value that positions the
body in the sequence of sections in the
template.

Page Layout Properties related to the layout of pages.
webControlType Association

Attribute
Type of web control to be used when the
attribute or association is displayed in an
editing form. <undefined> means it will not
be displayed. FixedText means it will be
displayed as ordinary text, not a field. Note
that associations are displayed only if the
target is navigable.

width Association
Attribute

Field width in characters Applies to TextBox
(size attribute).

maxLength Association
Attribute

Maximum # characters accepted by the field.
Applies to TextBox.

order Attribute
Association

Specifies the order of fields in the web page.
Note that attributes and associations come
out in separate sequences, even if you try to
interleave them by their order values.

isName Attribute Specifies the fields of an object that
constitute a meaningful name for the object.
For example, for a Person object, it could be
firstName and lastName. For a Product
object it could be productCode. Used when
displaying an association to the object.

includeTarget Role How to handle target end of navigable
association from Web Page. “forDisplay”
target object(s) will be displayed in page.
“forEdit” target object will be edited in page.
Requires max. target cardinality = 1.

includeTargetDetails Role If when including the target end of an
association in a Web Page (see
includeTarget), you can also display a table
of detail records linked to the target. The
target must have max. cardinality = 1.

Technology Accelerator™: ASP.NET MVC Web-Tier

Page 9 of 20

Navigable associations from the target will
be displayed.

webEventType Transition Specifies the type of web page element that
triggers the transition: a button in the form, a
link at the bottom of the page, or a link on an
individual item in a table.

CSS Properties related to Cascading Style
Sheets.

Stylesheet Model Stylesheet name. Leading '/' and context
root will be provided by generated page.

Data Heading Model CSS class name for headings for each type
of data object.

Data Column Label Model CSS class name for column labels in data
tables.

Data Row Label Model CSS class name for row labels in data
tables.

Data Number Cell Model CSS class name for data cells containing
numbers in data tables.

Data Text Cell Model CSS class name for data cells containing
text in data tables.

Form Label Model CSS class name for form field labels.
Form Mandatory Flag Model CSS class name for flag that indicates a

mandatory field in a form.
Form Number Field Model CSS class name for form number input

fields.
Form Text Field Model CSS class name for form text input fields.
Section Heading Model CSS class name for JSP Section Heading.

Validation Properties related to input validation.
isMandatory Attribute Indicates that this input field is mandatory.

Business
Business Entities

isBusinessEntity Class
Parameter
Attribute

Used to identify objects that have sense
from the MVC View and Controller layers.
They capture information that must be
present and generable from the MVC Model.

isAction Operation Identifies an Action that can be invoked on
the MVC.

isActionOutputParameter Parameter Describes data that are returned after an
Action is performed.

Technology Accelerator Issues closely related to the technology
accelerator implementations.

Main Used to group all main templates that drive
the generation process.

Support Used to group all templates that are not
directly executed but are executed from the
main templates.

JSP WAF Technology-dependent values for the JSP
WAF Technology Accelerator.

defaultLocale Model Default locale for the web application.

Comment: Not Clear!

David C. Brown
Not Clear!

Technology Accelerator™: ASP.NET MVC Web-Tier

Page 10 of 20

As a convenience, the following stereotypes are supported by the architecture specification. Use
of these stereotypes is optional, as you can achieve the same effect by setting the corresponding
properties.

Stereotype UML Element Description
Action Operation Identifies operations that correspond to Controller

Actions.
 isAction = True

business entity Class Identifies business entity classes.
 isBusinessEntity = True.

Web Activity StateMachine Identifies an Activity Diagram that models web
navigation.
 isNavigation = True.

Web Page Class Identifies a class that models a web page.
 isPage = True.
 isPageSection = True.

Web Page Section Class Identifies a class that models a web page section.
 isPageSection = True.

Web Page Template Class Identifies a class that models a web page template.
 isPageTemplate = True.

Platform-Specific Model
This section describes the main elements of the MVC web application that are produced by the
Technology Accelerator™ for a given PIM. illustrates these elements. Figure 5

Technology Accelerator™: ASP.NET MVC Web-Tier

Page 11 of 20

Figure 5. MVC Application and Relationships

The MVC is separated into three sections: the Model, the Controller, and the View.

The Model
The Model represents the business tier. As the Technology Accelerator™ does not generate the
business tier, the Model contains two packages, Model.Keys and Model.Values, which represent
the view of the business tier that is needed for the application to function correctly.
illustrates Model.Keys, and illustrates Model.Values.

Figure 6
Figure 7

Model

View
Controller

Controllers invoke
actions on the
Model to modify
its state.

The View interrogates
the Model to retrieve
data for rendering. In this
implementation, the
Model does not notify
the View that its state
has changed.

This Technology Accelerator™ does not create
the Model; it merely creates, through two
packages (Model.Keys and Model.Values), a
facade to the Model. The business tier is
implemented elsewhere, and the facade
interfaces with the business tier to perform
actions or access data.

This MVC pattern represents
the presentation tier of an
application.ASP.NET is used

The ASP.NET paradigm does not
centralize the processing of user
requests but handles them
directly through the target ASPX

here only. web page. The target ASPX Web
Page must hence delegate action
invocation to the Controller.

Technology Accelerator™: ASP.NET MVC Web-Tier

Page 12 of 20

Figure 6. The Model.Keys Package

Key
ObjectID : String

BusinessEntityXXXKey

This object represents a
key for accessing or
identifying a business
entity. Keys don't have
data elements and provide
the means for retrieving or
referencing the associated
business entity.

For each business entity
in the PIM, an object
derived from Key will be
created.

Technology Accelerator™: ASP.NET MVC Web-Tier

Value
ObjectID : String

BusinessEntityXXX
Attribute1 : Integer
Attribute2 : String
Attribute3 : AnotherBusinessEntityDerivedFromValue

This object
represents a
business entity.
Each business entity
has an ObjectID.

For each business entity in the
PIM, an object derived from Value
will be created.

This object will contain public
attributes for the data it
represents and will have
associations to other business
entities rendered as attributes or
collections.

Figure 7. The Model.Values Package

The Controller
The Controller () represents the actions that can be performed on the Model and how to
invoke them. The Controller contains an object called ModelFacade, which contains one static
operation for each action. Each operation contains a Code Pocket™, which should be filled by a
developer, to orchestrate elements on the business tier to achieve the desired result.

Figure 8

Page 13 of 20

Technology Accelerator™: ASP.NET MVC Web-Tier

Base class for the controller
associated to a particular web
page. Every web page has a View
PageController.

Page 14 of 20

Figure 8. The MVC Controller

Base class used
to receive data
from an action.

Base class
used to
transfer data to
an action.

For each action
permissible on a business
entity, a corresponding
operation will be created
in this class.

XXXPageCo
ntroller

Action1()

XXXActionResult
Attribute1 : Integer
BusinessElement1 : BusinessElement1Key

XXXActionData
Attribute1 : Integer
BusinessElement1 : BusinessElement1Key

For each action, an ActionResult
derived class will be created. The
data it holds are the output
parameters of the action.
References to business entities are
handled through keys.

For each web page, an
object deriving from
PageController will be
created. It will have one
operation per action, which
is invokable on that page.
The actual work of the
action is delegated to the
ModelFacade object.

For each action, an ActionData derived
class will be created. The data it holds
are the input parameters of the action.
References to business entities are
handled through keys.

ActionResult
ActionData

PageController

(from PSM)

ModelFacade

Action1()

Ouput Data

Input Data

Action2()
Action3()

Delegates

Technology Accelerator™: ASP.NET MVC Web-Tier

Page 15 of 20

The View
The MVC View () contains the elements that interface with ASP.NET to provide the
presentation (GUI) to the user. The user perceives the system as a series of web pages. Some
pages can be protected while others cannot. One of the pages is the starting point of the
application. Although the client can request any page manually, the page preprocess mechanism
must be prepared to handle this case. The MVC View uses HTTP client redirections to perform
page changing. This is a bit slower than changing pages on the server but maintains a cleaner
application state as viewed by the web browser, as its page cache, backward-forward navigation,
and history mechanisms remain coherent.

Figure 9

The View contains an object called ModelFactory, which contains one static operation for each
business entity. Each operation contains a Code Pocket™, which should be filled by a developer,
to construct a business entity with data that comes from the business tier.

The View contains one object for each web page. Each web page object contains a link to a
PageController to invoke individual actions. Each web page object also contains getters for the
different business entities that the page has access to (getters delegate to ModelFactory). Finally,
each web page object contains event handlers that correspond to the transitions in the navigation
activity diagram. These event handlers invoke the action and act upon the result to cause
navigation to the proper page.

Technology Accelerator™: ASP.NET MVC Web-Tier

Web pages that are accessible
via the Web must derive from this
object. It is provided by ASP.NET

Page 16 of 20

Figure 9. The MVC View

Code Generation Process
This section takes a “white-box” approach—it describes the Architect project template
mechanisms (the focus is on the “how”).

Code Generation Templates
This table lists the principal templates for creating the web-tier of a MVC-based ASP.NET web
application PSM from a given PIM.

System.Web.UI.Page
<<ASP.NET>> and provides most of the ASP.

NET functionality including
viewstate, state management,
caching, authentication, and
more.

Each page in the PIM
generates a class
that derives from
System.Web.UI.Page.
Each page has a
myController attribute
that will link it to its
corresponding
controller for invoking
actions.

For each business entity,
a corresponding operation
is created in this class.
Each operation will include
unique code to create the
specified business entity.

PageController
(from Controller)

ModelFactory

XXXPage

GetBusinessEntity1()
GetBusinessEntity2()

GetBusinessEntity1()
+myController

11OnEvent1()
OnEvent2()

The getters in the
page simply

Delegates

The event handlers are delegate to
called by unique code ModelFactory,
to invoke the action, enforcing which
verify its result, and business entities
navigate to the are available from
corresponding page specific pages

as modeled in automatically.

the PIM.

Technology Accelerator™: ASP.NET MVC Web-Tier

Page 17 of 20

Template Name Type Description
Main Composite Simply serves to start the Technology Accelerator™.
ASP.NET MVC Codagen
Technology Accelerator™

Composite Actually drives the Technology Accelerator™. Logs the
version and the Technology Accelerator™ name and then
coordinates the creation of all necessary elements.

MVC Model Composite Creates everything that is related to the Model part of the
MVC.

MVC View Composite Creates everything that is related to the View part of the
MVC.

MVC Controller Composite Creates everything that is related to the Controller part of
the MVC.

ASP.NET Specific Composite Creates everything that is specific to ASP.NET.
MVC View \ Create Business
Entities Getters

Composite For each Business Entity that can be accessed by a web
page, creates the corresponding getter as well as the
associated ASPX testing code.

MVC Controller \ Fill
ModelFacade and Create
ActionData and
ActionResults

Composite For each action, creates the input and output structures
as well as the corresponding operation in the
ModelFacade class, which must be filled by unique code
to modify the state of the business tier.

MVC Model \ Create Model
Keys and Values

Composite Creates the facade for the MVC Model, which
corresponds to an abstraction of the business tier.

MVC View \ Fill
ModelFactory

Composite For each Business Entity, creates a corresponding
operation that must be filled by unique code to create the
corresponding Value derived object according to a Key.

MVC View \ Create
CodeBehinds

Composite Creates, for every web page, the CodeBehind file and its
PageController attribute.

ASP.NET Specific \ Create
ASPXs

Composite For each web page, creates the ASPX file.

MVC View \ Create
Navigation Events

Composite Creates, for each transition a web page can have, an
event handler that will perform action invocation, results
checking, and page navigation.

Also creates the test ASPX file that associates the actions
testing block to a web page.

MVC Controller \ Create
Page Controllers

Composite Creates a PageController descendent for each web page,
and inserts within it the relevant action invocation
operations.

Example Model
This Technology Accelerator™ will use a simple shopping cart example.

The ShoppingCart business entity gathers the user’s current purchases. The user can add Items
from the Inventory to the ShoppingCart. When a ShoppingCart is purchased, an Order is created
out of it, and the ShoppingCart is deleted.

Web pages are created to display the contents of one or more of these business entities. In
addition, navigation between the web pages is made possible by events that might trigger actions
that will act upon these business entities.

Technology Accelerator™: ASP.NET MVC Web-Tier

Page 18 of 20

Generating the Example
This section describes the additional steps required to generate the PSM model, compile the
resulting code, and execute the sample application. To assist you in these steps, the example
includes a Rose model of the shopping cart. This will permit the generation of all structural code
and a sample GUI that allows you to test the sample application.

Also included is a simple business tier linked to a data tier. The data tier is not persisted to
persistent storage; all of the data live in the ASP.NET process. The inventory, upon initial usage,
randomly creates 100 items, whose codes are named “itemXXX,” where XXX is the item number.
The business tier validates data and handles errors but is not transacted, that is, its state is not
rolled-back if an unhandled error is fired that might leave the data tier in an unknown state.

To try the shopping cart, you can use the generated sample user interface. This interface is
intended for testing purposes only. The test GUI is easy to use and simply demonstrates how to
use the generated code. To create a “user-friendly” custom GUI, simply copy the unique code
included with the Technology Accelerator™.

Please note that to integrate code from Codagen Architect using the .NET Code Integrators to an
“empty web project,” you must take special steps to configure Microsoft IIS and Microsoft
VisualStudio.NET correctly on your development station. The following steps assume that your
files will be generated in a directory named c:\rd\shoppingcart and that the URL to access it will
be http://localhost/shoppingcart.

1. Verify that Microsoft IIS is correctly installed and running on your station.
2. Verify that Microsoft ASP.NET is also installed and configured. It should have had been

installed automatically by Microsoft VisualStudio.NET if Microsoft IIS was already
installed.

3. Create the c:\rd\shoppingcart directory, into which Codagen Architect will generate all its
files.

4. Share the c:\rd\shoppingcart directory as an IIS Virtual Directory named shoppingcart
with the following permissions: read, write, and directory listing. Note that the directory
name and its associated virtual directory name must be the same.

5. Make sure the directories NTFS permissions (if applicable) are set correctly. Invalid
configuration could lead to a debugging problem or file-viewing problem that you will have
to resolve manually.

6. Set Codagen Architect project properties to the following:
a. The output folder should be c:\rd\shoppingcart.
b. The solution file name should be shoppingcart.sln.
c. The project file name should be http://localhost/shoppingcart/shoppingcart.

7. After the initial code generation, if VB.NET was targeted, before you include the ASPX
files in the VS.NET project, blank out the root namespace that is found in the VS.NET
project properties.

Files Provided
The following files for generating the example are included in this Technology Accelerator™:

• Rose\ShoppingCart.mdl – The Rose model for the shopping cart example
• Example\CS – If your target language is C#, the unique files that you must copy to the

generation directory to make the shopping cart example fully functional.
• Example\VBNET – If the target language is VB.NET, the unique files that you must copy

to the generation directory to make the shopping cart example fully functional.

To operate this Technology Accelerator™, you need these files:

• ASP.NET MVC Web Application.pdf – This document
• Either CTA ASP.NET MVC.gpcs – The Codagen Architect project for C#
• Or CTA ASP.NET MVC.gpvb – The Codagen Architect project for VB.NET

Technology Accelerator™: ASP.NET MVC Web-Tier

Page 19 of 20

• webApplication.csf – The architecture specification file

PSM Generation
To generate the PSM, follow these steps:

1. Open the Rose model (Rose\ShoppingCart.mdl), select the shoppingcart package, and
invoke Codagen Architect-Implement.

2. Open the Technology Accelerator™ project file for C# or VB.NET.
3. Configure the project as described in the section "Generating the Example" (output

directory and so forth).
4. Generate the code using every template (Generate All command).

Code to Add Manually
You may test the shopping cart without adding any code at all (see the next sections), but the
system will throw exceptions where critical Code Pockets™ should be populated. For the
shopping cart to become functional, simply add the unique code files to the generation directory
(replace existing files) as mentioned in the following sections.

Code Compilation
Code generated by the Technology Accelerator™ should not encounter problems when
compiling. If it does, this might be due to the usage of types that are not referenced automatically
by the project.

For the shopping cart example, you should add references to the following assemblies for correct
compilation to occur:

• System
• System.Web

You must then link the ASPX files to the project. When added to the project, they will
automatically get associated to their code behind files.

To use the unique code files

1. Copy them to the generation directory, replacing any existing files.
2. Then add the new files to the project.

Sample Testing
By itself, the Technology Accelerator™ will create enough of the GUI for you to test two things:

1. To test the actions of a specific page, navigate to that page. Provide the correct input
data, and press invoke.
The result of the action will be displayed.

2. To test the code to retrieve a business entity, navigate to a specific page. Once the entity
is retrieved, its ToString() operation is called to display a textual description. By default,
this operation displays the complete name of the object. This behavior can be overloaded
depending on your business entities.

In both cases, typing null (in a C# project) or Nothing (in a VB.NET project) will initialize the
corresponding variable to no references.

The added unique code will allow you to use the shopping cart as if it were a real, production
quality web site.

References
Pattern-Oriented Software Architecture–A System of Patterns, pp.125-143, Bushmann et al.,
Wiley 1996

Technology Accelerator™: ASP.NET MVC Web-Tier

Page 20 of 20

Copyright and Trademark Information
The software described in this document is furnished under a license agreement or non-
disclosure agreement. The software may be used or copied only in accordance with the terms of
those agreements. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means electronic or mechanical, including photocopying and
recording for any purpose other than the purchaser’s personal use, without the prior written
permission of Codagen Technologies Corp.

Codagen Technologies Corp.
2075 University St., Suite 1020
Montreal (Quebec)
Canada H3A 2L1

Codagen® and Generation Template® are registered trademarks of Codagen Technologies
Corp. The Codagen logo and design and the terms White Box, Code Pocket, and Technology
Accelerator are service marks or trademarks (™) of Codagen Technologies Corp.

ANSI is a registered trademark of the American National Standards Institute.

Borland, Together, and ControlCenter are trademarks or registered trademarks of Borland
Software Corporation.

IBM is a trademark of the IBM Corporation in the United States or other countries or both.

Java is a trademark of Sun Microsystems, Inc.

Rational and Rational Rose are trademarks or registered trademarks of Rational Software
Corporation in the United States and in other countries.

Visual Studio, C#, Visual Basic, Visual Modeler, .NET, Windows NT, Windows 2000, Windows
XP, Windows 98 and Visio are trademarks or registered trademarks of Microsoft Corporation.

All other names are used for identification purposes only and are trademarks or registered
trademarks of their respective holders.

© 1999-2003 Codagen Technologies Corp.

	Introduction
	Goal
	Compatibility
	Overview

	Application Model
	Platform-Independent Model
	UML Model Characteristics

	Architecture Specification
	Platform-Specific Model
	The Model
	The Controller
	The View

	Code Generation Process
	Code Generation Templates

	Example Model
	Generating the Example
	Files Provided
	PSM Generation
	Code to Add Manually
	Code Compilation
	Sample Testing

	References
	Copyright and Trademark Information

