
Graph Grammars

Marc Provost
McGill University marc.provost@mail.mcgill.ca

February 18, 2004

Abstract
This presentation introduces graph transformations.

– Typeset by FoilTEX –

Marc Provost

Structure of the talk

• Graph Theory

• Subgraph isomorphism problem and algorithms

• Graph Rewriting: General Framework & Difficulties

• Double & Single pushout approaches

– Typeset by FoilTEX – 1

Marc Provost Graph Theory

Graph Theory

• A (labelled, directed) graph G = (V, E, source, target, label) consists of
a finite nonempty set V (vertices) and a finite set E ⊆ V × V (edges),
along with two mappings source and target assigning a source and a
target node to each edge, and a mapping label assigning a labelling
symbol from a given alphabet to each node and each edge.

– order: |V |, size: |E|
– An arc e = (v, w) is said to be incident with vertices v (source) and

w (target).
– G.inc(v), G.outc(v), are two mapping assigning a given vertice v to

its in and out connections,respectively.

• Subgraph, induced subgraph. Given two graphs, G = (V,E), G′ =

– Typeset by FoilTEX – 2

Marc Provost Graph Theory

(V ′, E′), G′ is said to be a subgraph of G if E′ ⊆ E. The subgraph of
G induced by G′ is the graph (V ′, E ∩ V ′ × V ′).

subgraph induced subgraph

Figure 1: Sugraph / Induced subgraph (labels omitted)

• Homomorphism (mapping). Given two graphs G = (V,E), G′ =
(V ′, E′), a vertex mapping H : V → V ′ is said to be an homomorphism
from G to G′ if it is edge preserving: Given two vertices u, v ∈ V , H(u)
is adjacent to H(v) whenever u is adjacent to v.

• Graph Isomorphism. A bijective (one-to-one, surjective) homomorphism.

– Typeset by FoilTEX – 3

Marc Provost Graph Theory

• (Partial) Subgraph Isomorphism. An injective (one-to-one)
homomorphism. Also called monomorphism in the literature.

• Induced (Complete) Subgraph Isomorphism. A injective homomorphism
reflecting in G the structure of the induced subgraph of G′.

G G’
V1

V2

V3 V4

U1

U2

U3

Figure 2: Homomorphism

– Typeset by FoilTEX – 4

Marc Provost Graph Theory

G’G
V1

V2

V3 V4

G
V1

V2

V3 V4

G’

Subgraph Isomorphism

Induced Subgraph Isomorphism

Figure 3: Complete,Partial subgraph isomorphisms

– Typeset by FoilTEX – 5

Marc Provost Subgraph Isomorphism Problem & Algorithms

Subgraph Isomorphism Problem & Algorithms

• The first step to rewrite a host graph is to match the left-hand side of a
rule.

• Subgraph Isomorphism is NP-Complete for general graphs.

• In general, the algorithms are based on the idea of backtracking : Extend
a partial solution, one variable at a time, until a complete solution is
reached or the partial solution cannot be extended anymore; this can be
viewed by a backtracking tree.

• Most algorithms try to limit the time-space explosion by pruning the
backtracking tree.

– Typeset by FoilTEX – 6

Marc Provost Subgraph Isomorphism Problem & Algorithms

L1

L2 L3

L
G1 G2

G3 G4

G5

G

L1 G1 G2 G3 G4 G5

L2 G3 G1

L3 G2

G3 G3

Backtracking tree matching L in G

Figure 4: Execution of a typical subgraph isomorphism algorithm
– Typeset by FoilTEX – 7

Marc Provost Subgraph Isomorphism Problem & Algorithms

• Pruning involves testing that the current partial solution cannot evolve
toward a complete solution. Given a graph L to be matched
into a graph G, suppose we have the following partial solution
M=((l1, g1), (l2, g2), ..., (li, gi)). Now, we are extending M with
(li+1, gi+1), and we want to test if this path can possibly lead to a
complete solution. Possible pruning:

– If L.outc(li+1) > G.outc(gi+1): prune the tree!
– If L.inc(li+1) > G.inc(gi+1): prune the tree!
– Ullmann’s algorithm [4]: Check that, for all vertices lv adjacent

to li+1, there is at least one vertex gv adjacent to gi+1 such that
M ∪ {(li+1, gi+1), (lv, gv)} is a valid partial solution. If not, prune the
tree!

• Other approaches to subgraph isomorphism:

– Is it possible to solve the problem in polynomial time if some

– Typeset by FoilTEX – 8

Marc Provost Subgraph Isomorphism Problem & Algorithms

preprocessing is used? A very interesting paper [3] shows how to
solve the problem by means of decision trees:
∗ A decision tree is constructed from a database of model graphs.

(By generating the set of all permutations of the adjacency matrix
of all graphs, and organizing it into a decision tree)

∗ At run-time, easily determine if there is a subgraph isomorphism
between an unknown input graph and some of the model graphs.

∗ Run in time O(n2) if preprocessing is neglected
∗ But, the size of the decision tree contains an exponential number of

nodes...
∗ Useful if the model graphs are small, and real time behavior is

needed.

– Typeset by FoilTEX – 9

Marc Provost Graph Rewriting: General Idea

Graph Rewriting: General Idea [2]

• Basic Idea: Iteratively apply rules to transform a host graph G.

• General framework: a (graph transformation) rule r=(L,R,K,glue,emb,appl)
consists of:

– Two graphs: a left-hand side L and a right-hand side R

– A subgraph K of L; the interface graph.
– A homomorphism glue, relating K to the right-hand side R

– An embedding relation emb, relating nodes of L to nodes of R.
– A set appl specifying the applications conditions for the rule

– Typeset by FoilTEX – 10

Marc Provost Graph Rewriting: General Idea

L

K

R

glue

emb

G

Figure 5: Example of a graph transformation rule

– Typeset by FoilTEX – 11

Marc Provost Graph Rewriting: General Idea

• Step 1: Match L in the host graph G:

L

K

R

glue

emb

G

• Step 2: Check the applications conditions (Assume none in this example).

– Typeset by FoilTEX – 12

Marc Provost Graph Rewriting: General Idea

• Step 3: Remove from G the part of the isomorphic match that correspond
to L (i.e. keep the interface subgraph K), along with all dangling edges.
This yields the context graph D. In short, D = G − (L − K):

L

K

R

glue

emb

G D

– Typeset by FoilTEX – 13

Marc Provost Graph Rewriting: General Idea

• Step 4: Glue the context graph D and the right-hand side R, according
to the glue homomorphism. This yields the gluing graph E:

G

L

K

R

glue

emb

D E

– Typeset by FoilTEX – 14

Marc Provost Graph Rewriting: General Idea

• Step 5: Embed the right-hand side R into D, according to the relation
emb. This yields the derived graph H:

G

L

K

R

glue

emb

D E H

– Typeset by FoilTEX – 15

Marc Provost Graph Rewriting: General Idea

• Several Difficulties occur with graph grammars:

– Do we require an isomorphism between the LHS and the host graph?
– Do we delete dangling edges when replacing the LHS by the RHS? Or

we do not allow such rule to execute?
– How do we organize the rules?

– Typeset by FoilTEX – 16

Marc Provost Double pushout approach

Double pushout approach (DPO) [1]

• The first algebraic approach

• Algebraic: Basic algebraic constructions (from category theory) were
used to define the transformation.

– In DPO: Two pushouts (glues) are performed in the transformation.
The first pushout correspond to the deletion of the LHS in the host
graph. The second pushout correspond to the insertion of the RHS.

• No embedding function.

• The homomorphisms between K and L; K and R must be injective.

– Typeset by FoilTEX – 17

Marc Provost Double pushout approach

• Does not require an isomorphism between L and the host graph G.
Instead, a less restrictive approach is used. Two conditions are added for
the application of a rule. (also known as the gluing conditions):

– Dangling condition: If a vertex is deleted, then the production must
specify the deletion of the edges incident to that node.G

L

K

R

K

G

– Typeset by FoilTEX – 18

Marc Provost Double pushout approach

– Identification condition: Every element that should be deleted in G
has only one pre-image in L

L

K

R

K

G

– Typeset by FoilTEX – 19

Marc Provost Double pushout approach

L

K

R

glue

emb

G

Figure 6: General graph transformation rule

– Typeset by FoilTEX – 20

Marc Provost Double pushout approach

RKL

G

l r

m

l*

d

r*

HD

m*

1

2

3

45

1

2

3

45

1

2

3

45

Figure 7: DPO graph transformation rule

– Typeset by FoilTEX – 21

Marc Provost Single pushout approach

Single pushout approach (SPO) [1]

• The SPO approach was introduced to add expressiveness to the
derivations.

• No gluing conditions.

• No embedding function.

• Deletion has priority over preservation

• The interface graph is expressed as a partial homomorphism between L
and R.

– Typeset by FoilTEX – 22

Marc Provost Single pushout approach

RL

G

p

m

p*

H

m*

1 2

34

1 2

3 4

Figure 8: SPO graph transformation rule
– Typeset by FoilTEX – 23

Marc Provost Single pushout approach

References

[1] A. Corradini, H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro,
and A. Wagner. Algebraic approaches to graph transformation - part
I: Basic concepts and double pushout approach. In G. Rozenberg,
editor, Handbook of Graph Grammars and Computing by Graph
Transformation. Vol. I: Foundations, chapter 4, pages 247–312. World
Scientific, 1997.

[2] A. H. B. H. H.-J. K. S. K. D. P. A. S. G. T. M.Andries, Gregor Engels.
Graph Transformation for specification and programming. PhD thesis,
1996.

[3] B. T. Messmer and H. Bunke. Subgraph isomorphism in polynomial
time. Technical Report IAM 95-003, 1995.

– Typeset by FoilTEX – 24

Marc Provost Single pushout approach

[4] J. Ullman. An algorithm for subgraph isomorphism. Journal of the
ACM, 23:31–42, 1976.

– Typeset by FoilTEX – 25

