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Abstract
This presentation introduces graph transformations.
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Structure of the talk

• Graph Theory

• Subgraph isomorphism problem and algorithms

• Graph Rewriting: General Framework & Difficulties

• Double & Single pushout approaches
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Graph Theory

• A (labelled, directed) graph G = (V, E, source, target, label) consists of
a finite nonempty set V (vertices) and a finite set E ⊆ V × V (edges),
along with two mappings source and target assigning a source and a
target node to each edge, and a mapping label assigning a labelling
symbol from a given alphabet to each node and each edge.

– order: |V |, size: |E|
– An arc e = (v, w) is said to be incident with vertices v (source) and

w (target).
– G.inc(v), G.outc(v), are two mapping assigning a given vertice v to

its in and out connections,respectively.

• Subgraph, induced subgraph. Given two graphs, G = (V,E), G′ =
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(V ′, E′), G′ is said to be a subgraph of G if E′ ⊆ E. The subgraph of
G induced by G′ is the graph (V ′, E ∩ V ′ × V ′).

subgraph induced subgraph

Figure 1: Sugraph / Induced subgraph (labels omitted)

• Homomorphism (mapping). Given two graphs G = (V,E), G′ =
(V ′, E′), a vertex mapping H : V → V ′ is said to be an homomorphism
from G to G′ if it is edge preserving: Given two vertices u, v ∈ V , H(u)
is adjacent to H(v) whenever u is adjacent to v.

• Graph Isomorphism. A bijective (one-to-one, surjective) homomorphism.
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• (Partial) Subgraph Isomorphism. An injective (one-to-one)
homomorphism. Also called monomorphism in the literature.

• Induced (Complete) Subgraph Isomorphism. A injective homomorphism
reflecting in G the structure of the induced subgraph of G′.

G G’
V1

V2

V3 V4

U1

U2

U3

Figure 2: Homomorphism
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G’G
V1

V2

V3 V4

G
V1

V2

V3 V4

G’

Subgraph Isomorphism

Induced Subgraph Isomorphism

Figure 3: Complete,Partial subgraph isomorphisms
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Subgraph Isomorphism Problem & Algorithms

• The first step to rewrite a host graph is to match the left-hand side of a
rule.

• Subgraph Isomorphism is NP-Complete for general graphs.

• In general, the algorithms are based on the idea of backtracking : Extend
a partial solution, one variable at a time, until a complete solution is
reached or the partial solution cannot be extended anymore; this can be
viewed by a backtracking tree.

• Most algorithms try to limit the time-space explosion by pruning the
backtracking tree.
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L1

L2 L3

L
G1 G2

G3 G4

G5

G

L1 G1 G2 G3 G4 G5

L2 G3 G1

L3 G2

G3 G3

Backtracking tree matching L in G

Figure 4: Execution of a typical subgraph isomorphism algorithm
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• Pruning involves testing that the current partial solution cannot evolve
toward a complete solution. Given a graph L to be matched
into a graph G, suppose we have the following partial solution
M=((l1, g1), (l2, g2), ..., (li, gi)). Now, we are extending M with
(li+1, gi+1), and we want to test if this path can possibly lead to a
complete solution. Possible pruning:

– If L.outc(li+1) > G.outc(gi+1): prune the tree!
– If L.inc(li+1) > G.inc(gi+1): prune the tree!
– Ullmann’s algorithm [4]: Check that, for all vertices lv adjacent

to li+1, there is at least one vertex gv adjacent to gi+1 such that
M ∪ {(li+1, gi+1), (lv, gv)} is a valid partial solution. If not, prune the
tree!

• Other approaches to subgraph isomorphism:

– Is it possible to solve the problem in polynomial time if some
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preprocessing is used? A very interesting paper [3] shows how to
solve the problem by means of decision trees:
∗ A decision tree is constructed from a database of model graphs.

(By generating the set of all permutations of the adjacency matrix
of all graphs, and organizing it into a decision tree)

∗ At run-time, easily determine if there is a subgraph isomorphism
between an unknown input graph and some of the model graphs.

∗ Run in time O(n2) if preprocessing is neglected
∗ But, the size of the decision tree contains an exponential number of

nodes...
∗ Useful if the model graphs are small, and real time behavior is

needed.
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Graph Rewriting: General Idea [2]

• Basic Idea: Iteratively apply rules to transform a host graph G.

• General framework: a (graph transformation) rule r=(L,R,K,glue,emb,appl)
consists of:

– Two graphs: a left-hand side L and a right-hand side R

– A subgraph K of L; the interface graph.
– A homomorphism glue, relating K to the right-hand side R

– An embedding relation emb, relating nodes of L to nodes of R.
– A set appl specifying the applications conditions for the rule
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L

K

R

glue

emb

G

Figure 5: Example of a graph transformation rule
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• Step 1: Match L in the host graph G:

L

K

R

glue

emb

G

• Step 2: Check the applications conditions (Assume none in this example).
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• Step 3: Remove from G the part of the isomorphic match that correspond
to L (i.e. keep the interface subgraph K), along with all dangling edges.
This yields the context graph D. In short, D = G − (L − K):

L

K

R

glue

emb

G D
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• Step 4: Glue the context graph D and the right-hand side R, according
to the glue homomorphism. This yields the gluing graph E:

G

L

K

R

glue

emb

D E
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• Step 5: Embed the right-hand side R into D, according to the relation
emb. This yields the derived graph H:

G

L

K

R

glue

emb

D E H
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• Several Difficulties occur with graph grammars:

– Do we require an isomorphism between the LHS and the host graph?
– Do we delete dangling edges when replacing the LHS by the RHS? Or

we do not allow such rule to execute?
– How do we organize the rules?
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Double pushout approach (DPO) [1]

• The first algebraic approach

• Algebraic: Basic algebraic constructions (from category theory) were
used to define the transformation.

– In DPO: Two pushouts (glues) are performed in the transformation.
The first pushout correspond to the deletion of the LHS in the host
graph. The second pushout correspond to the insertion of the RHS.

• No embedding function.

• The homomorphisms between K and L; K and R must be injective.
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• Does not require an isomorphism between L and the host graph G.
Instead, a less restrictive approach is used. Two conditions are added for
the application of a rule. (also known as the gluing conditions):

– Dangling condition: If a vertex is deleted, then the production must
specify the deletion of the edges incident to that node.G

L

K

R

K

G
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– Identification condition: Every element that should be deleted in G
has only one pre-image in L

L

K

R

K

G

– Typeset by FoilTEX – 19



Marc Provost Double pushout approach
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R

glue

emb

G

Figure 6: General graph transformation rule
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Figure 7: DPO graph transformation rule
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Single pushout approach (SPO) [1]

• The SPO approach was introduced to add expressiveness to the
derivations.

• No gluing conditions.

• No embedding function.

• Deletion has priority over preservation

• The interface graph is expressed as a partial homomorphism between L
and R.
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Figure 8: SPO graph transformation rule
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