
Refactoring

Chen Tang
March 3, 2004

2

What Is Refactoring (Definition)

Refactoring is the process of
changing a software system in
such a way that it does not
alter the external behavior of
the code yet improves its
internal structure.

3

Where Did Refactoring come From
Good programmer certainly have spent
some time cleaning up their code.
Two of the first people recognize the
importance of refactoring: Ward
Cunningham and Kent Beck
Bill Opdyke put the application of
refactoring to even broader area.
John Brant and Don Roberts have taken
the tool ideas in refactoring much further
to build the Refactoring Browser

4

A Practical Example of Refactoring (1)

Movie

priceCode: int
Rental

daysRented: int

Customer

statement()

1 *
*

1

5

A Practical Example of Refactoring (5)

aCustomer aRental aMovie

statement

getDaysRented

getMovie

getPriceCode

*[for all rentals]

6

A Practical Example of Refactoring (6)

Problems:
First, there too few responsibilities put into
the class Movie and class Rental. And
statement method in class Customer does
way too much!
Second, hard to add new functions. Say
want to generate bill in the form of HTML!
Third, calculate every time’s renter point
should be the class Rental’s responsibility!

7

A Practical Example of Refactoring (7)

Refactoring (Moving Method):
Moving the Price calculation for every
rental to class Rental
Moving the calculating renter points to
class Rental

8

A Practical Example of Refactoring (7)

Movie

priceCode: int
Rental

daysRented: int

getCharge()

getFrequentRenterPoint()

Customer

statement()

1 *

*

1

9

A Practical Example of Refactoring (8)

statement

aCustomer aRental aMovie

getFrequentRentalPoints

getCharge
getPriceCode

*[for all rentals]

getPriceCode

10

A Practical Example of Refactoring (9)

Removing Temps. There are two
temporary variables in statement method:
totalCharge & totalRentalPoints.

Replace Temp with Query:
getTotalCharge()
getTotalFrequentRenterPoints()

11

A Practical Example of Refactoring (10)

Movie

priceCode: int

Rental

daysRented: int

getCharge()

getFrequentRenterPoint()

Customer

statement()

getTotalCharge()

getTotalFrequentRenterPoints()

1 *
*

1

12

A Practical Example of Refactoring (11)
aCustomer aRental aMovie

*[for all rentals] getFrequentRenterPoints

*[for all rentals] getCharge
getPriceCode

getTotalCharge

getPriceCode

statement

getTotalFrequentRenterPoints

13

A Practical Example of Refactoring (12)

Now it’s very easy to add another method to
generate statement in HTML format:

htmlStatement() {
//call getTotalCharge to get total charge
//call getFrequentRenterPoints to…

}

14

Why Should We Refactor?

Refactoring Improves the Design of
Software
Refactoring Makes Software Easier to
Understand
Refactoring Helps You Find Bugs
Refactoring Helps You Program Faster

15

The Importance of Building Tests

Whenever we do refactoring, the first step is
always a solid test for that section of code:

We have to rely on tests to tell us whether
we introduce any bugs and whether the
behavior of the software changes!

16

When Should We Refactor?

The Rule of Three
Third time you do something similar you refactor.

Refactor When You Add Function

Refactor When You Need to Fix a Bug

Refactor As You Do a Code Review

17

Bad Smells in Code
1. Duplicate Code
2. Long Method
3. Large Class
4. Long Parameter List
5. Divergent Change
6. Shotgun Surgery
7. Feature Envy
8. Data Clumps
9. Primitive Obsession
10. Parallel Inheritance Hierarchies

18

Bad Smells in Code (cont’d)
11. Lazy Class
12. Speculative Generality
13. Temporary Field
14. Message Chains
15. Middle Man
16. Inappropriate Intimacy
17. Alternative Classes with Different Interfaces
18. Incomplete Library Class
19. Data Class
20. Refused Bequest
21. Comments

19

Some Refactoring Rules

20

Composing methods

Extract Methods
Inline Methods
Inline Temp
Replace Temp with Query
Introducing Explaining Variable
Split Temporary Variable

21

Moving Features Between Objects

Move Method
Move Field
Extract Class
Inline Class
Hide Delegate
Remove Middle Man

22

Organizing Data

Self Encapsulate Field
Replace Data Value with Object
Change Value to Reference
Change Reference to Value
Change Unidirectional Association to
Bidirectional
Change Bidirectional Association to
Unidirectional
Encapsulate Field

23

Dealing with Generalization

Pull Up Field
Pull Up Method
Push Down Method
Push Down Field
Extract Subclass
Extract Superclass
Extract Interface
Collapse Hierarchy

24

The “Two Hats”

Kent Beck’s metaphor of two hats:
When using refactoring to develop software,
we divide our time between two activies:

Adding new functions

Refactoring

25

Problems with Refactoring & When
shouldn’t do refactoring

Databases
Changing Interfaces
Design Changes That Are Difficult to
Refactor
When Shouldn’t do refactoring?

When you should rewrite from scratch instead
When you are close to deadline

26

Refactoring Tools
One of the largest barrier to refactoring is

woeful lack of tool to support it.
Tool can make refactoring less a separate
activity from programming.
Tool can make design mistakes less costly,
because it makes refactoring easy and less
expensive.
Much less testing will be needed as some
refactoring can be done automatically, though
not all of them. So tests are still indispensable!

27

Towards Next Step (Tentative)
Integrate the following refactoring rules into
AToM3 by means of graph rewriting
(another alternative will be hard coded):

Pull Up/Push Down field
Pull Up/Push Down Method
Extract Subclass/Superclass/Interface
Rename method
Hide Method
Change direction of Association Between Class

28

Further References
Martin Fowler, Refactoring improving the
design of existing code, Addison Wesley,
1999
Refactoring Home Page:
http://www.refactoring.com/
refactoring catalog:
http://www.refactoring.com/catalog/index.html

http://www.refactoring.com/
http://www.refactoring.com/catalog/index.html

29

Thanks!
Questions & Comments ?

	Refactoring
	What Is Refactoring (Definition)
	Where Did Refactoring come From
	A Practical Example of Refactoring (1)
	A Practical Example of Refactoring (5)
	A Practical Example of Refactoring (6)
	A Practical Example of Refactoring (7)
	A Practical Example of Refactoring (7)
	A Practical Example of Refactoring (8)
	A Practical Example of Refactoring (9)
	A Practical Example of Refactoring (10)
	A Practical Example of Refactoring (11)
	A Practical Example of Refactoring (12)
	Why Should We Refactor?
	The Importance of Building Tests
	When Should We Refactor?
	Bad Smells in Code
	Bad Smells in Code (cont’d)
	Some Refactoring Rules
	Composing methods
	Moving Features Between Objects
	Organizing Data
	Dealing with Generalization
	The “Two Hats”
	Problems with Refactoring & When shouldn’t do refactoring
	Refactoring Tools
	Towards Next Step (Tentative)
	Further References

