
A Matching Algorithm and AGG

Overview

Marc Provost
McGill University marc.provost@mail.mcgill.ca

March 29, 2004

Abstract

This presentation go over the basic features
of agg for graph rewriting.

– Typeset by FoilTEX –



Marc Provost

Structure of the talk

• Introduction

• AGG Features

• Petrinet Graph Grammar Simulator (SPO)

• Petrinet simulator implementation

– Typeset by FoilTEX – 1



Marc Provost AGG: Introduction

AGG 1: Introduction

• AGG [3] [1] is a tool implementing the single pushout approach (SPO)
for graph rewriting.

• In the SPO approach [2], there is a partial homomorphism from the
LHS to the RHS. This mapping describes which graph elements are kept,
deleted and created (figure 1)

• The SPO is a “relaxed” version of the DPO, in the sense that it allows
dangling edges to be deleted (figure 1) (And it does not have the
identification condition in the case of non-injective matches).

1http://tfs.cs.tu-berlin.de/agg/

– Typeset by FoilTEX – 2



Marc Provost AGG: Introduction

LHS RHS

G

p

m

H

p*

m*

v1

v2

v1

v1

v2

v3

v1

v3

e1

e1

e2

v1

v3 e2

Figure 1: SPO approach

– Typeset by FoilTEX – 3



Marc Provost Graph Transformation Unit

AGG: Basic Features

• At the GUI level, AGG has support for directed simple graphs, which
have no self-loop.

Figure 2: Simple Graph

• Nodes and edges also have attributes, which can be any valid java Object.

– Typeset by FoilTEX – 4



Marc Provost Graph Transformation Unit

• An attribute has a name (unique), a type and a value.

• A graph must be a member of a graph transformation unit in order to
be transformed

– Type Graph
– Start Graph
– Set of rules

• The first element of a graph transformation unit is a type graph (close
to AToM3 meta-model).

• In the type graph, one specify the allowed attributes and the cardinality
constraints for each node and arc that will exist in the graph.

• The implicit modelling formalism used in the type graph is entity-
relationship. Vertex (Entity) and edge (Relationship) type are created

– Typeset by FoilTEX – 5



Marc Provost Graph Transformation Unit

and connected together.

• The second element of the unit is the start graph (host graph) on which
the transformation will be applied.

• Next, a set of rules describe the actual transformation. Each rule has

– A left-hand side (LHS) graph, specifying a pattern to be transformed
– A right-hand side (RHS) graph, specifying the pattern after the

transformation
– A vertex mapping from the LHS to the RHS specify the elements that

are preserved, deleted and created after the transformation.
– Potentially, a Negative Application Condition (NAC), which specify a

pattern not to be located in the LHS. A mapping from the LHS to
the NAC, is also needed to relate vertices of the LHS and the NAC.

– Typeset by FoilTEX – 6



Marc Provost Petrinets

A Practical example: Petrinets

• To illustrate the basic features of AGG, the Petrinets formalism was
meta-modelled, along with a graph-grammar based simulator.

• Note here that we are not talking about place-transition systems, but of
original petrinets where places cannot have more than one token.

• The first step: Design the type graph. This is quite simple, as seen on
figure 3

– Typeset by FoilTEX – 7



Marc Provost Petrinets

PlaceType TransitionType

Place2Transition

Transition2Place

*

1 1

*

*

1 1

*

hasToken: Boolean

Figure 3: Petrinets Type Graph

– Typeset by FoilTEX – 8



Marc Provost Petrinets

• Next step: Design the graph grammar rules. We want to simulate a
petrinet. Conditions for a transition to be enabled:

– All of its input places contain a token.
– None of its output places contain a token.

Figure 4: The transition to the left is enabled while the transition to the
right is not enabled.

• Once a transition is enabled, it can fire! Firing means removing all the
tokens of the input places and adding a token in all of the output places.

– Typeset by FoilTEX – 9



Marc Provost Petrinets

• Multiple transitions can be enabled at the same time and fire in parallel
if they are independent.

• First of all, we will assume that the transitions are fired sequentially.

• General Idea of a GG rule: Its LHS will match an enabled transition.
Its RHS will “fire” the transition. In our case, this means setting the
variable hasToken to false in all input places and to true in all output
places.

• Start simple: A rule with only one input and one output place:

– Typeset by FoilTEX – 10



Marc Provost Petrinets

Figure 5: Is this rule complete??

• This rule is NOT complete. We didn’t even make sure that the transition
was enabled!

– Typeset by FoilTEX – 11



Marc Provost Petrinets

Figure 6: The previous rule would match this!

• To solve this problem, we can make use of AGG Negative Application
Conditions:

– Typeset by FoilTEX – 12



Marc Provost Petrinets

LHS RHS

NAC:No empty input NAC:No full output

Figure 7: Our first rule of the petrinet simulator

– Typeset by FoilTEX – 13



Marc Provost Petrinets

• The previous rule will simulate correctly any transition with only one
input/output place. Other petrinets will be simulated incorrectly:

Figure 8: Our first rule does not simulate this correctly

• The graph grammar need to be extended to execute correctly any general
petrinet. Does this mean adding a rule for each possible configuration of
a transition??

– Typeset by FoilTEX – 14



Marc Provost Petrinets

• AGG supports non-injective matches. Could we make use of this feature?
If we define a similar rule with n input/output places, and execute the
graph grammar with non-injective matches, all the transitions with x < n

input/output places will be matched. Will this work?

– Typeset by FoilTEX – 15



Marc Provost Petrinets

LHS RHS

NAC no empty input NAC no token in output

Figure 9: An extension of the first rule to 2 input/output places

– Typeset by FoilTEX – 16



Marc Provost Petrinets

• If we use non-injective matches with the previous rule on the following
simple petri-net, 3 matches are generated, 1 being legal. We cannot use
this solution...

Figure 10: Non injective matches would not work on this graph.

• The lack of expressiveness of the SPO force us to generate all possible

– Typeset by FoilTEX – 17



Marc Provost Petrinets

patterns. But how can we know which patterns will occur in the host
graph in advance?? This is, of course, impossible...

• The easy solution would be to assume that the maximum degree of a
given transition is n and generate all the required firing patterns having
the degre ≤ n. For instance, with n=3:

– Typeset by FoilTEX – 18



Marc Provost Petrinets

Figure 11: Notice that there are n2 possible firing patterns for degree n.
– Typeset by FoilTEX – 19



Marc Provost Petrinets

• This approach is silly. First of all, we would have to choose a relatively
big n to cover all the expected petrinets. And, we would never be sure
that one day or another, some petrinet will not be simulated correctly.

• Moreover, most of the patterns will not occur, n2 can become quite
large.

• Another idea: Generate simulators on demand. That is, given an input
host graph to be simulated, have another graph grammar generating
required simulator rules. Several difficulties occur:

– There are a lot of rules to generate. However, a graph grammar
transform a graph into ONE graph. Since the graph grammar
is not a graph itself, but a collection of graphs, we would need
(n2 LHS, n2 RHS,n2 NAC) graphs in the worst case. This
is the problem with AGG, a graph grammar rule is not a graph
by itself, it is a collection of graphs : (LHS, RHS, NAC). A

– Typeset by FoilTEX – 20



Marc Provost Petrinets

graph grammar is a collection of rules along with a host graph:
((LHS, RHS, NAC)+, Host).

– Suppose we are trying to generate one firing pattern. We start with
((LHS, RHS, NAC)+, Host). In this case, Host is the graph that
we want to simulate. We have several graph grammar rules expressing
how to transform Host into ... what? Well, it could be say, the LHS
of the rule. But we also need the RHS. And we have possibly n2

rules. Thus, we would need n2 graph grammars...?
– To avoid having n2 graph grammars, we could generate all the

LHS,RHS and the NAC into the same graph as separate components
and then, manually retrieve the graphs. But, if we are doing “manual”
work, why not simply manually generate the simulator? This would be
quite easy if we could simply scan the graphs and generate the rules.

– Lastly, is generating the simulator equivalent to simulating it? We
basically need to find all the different firing patterns and generate
rules for them. Well, the simulator is exactly doing this. Could the

– Typeset by FoilTEX – 21



Marc Provost Petrinets

simulator generator by a simulator itself?

• For the reasons discussed before, I decided not to implement a simulator
generator based on graph grammars. Instead, the host graph will be
manually traversed to determine the maximal in and out degrees. This
information will be used to generate the required rules. This approach
has the following disadvantages:

– The simulator is not completely based on a graph grammar
– MANY rules will not be used during the simulation. This is because

we are using SPO: “programming without iteration”.
– Becomes very VERY slow as the maximal degree increases. We are

creating quadratic number of rules at EACH step...

And the following advantages:

– The core of the simulator is a graph grammar.
– Any given petrinet model will be simulated correctly.

– Typeset by FoilTEX – 22



Marc Provost Petrinets

• There is still a problem with the graph grammar petrinet simulator. It
is not working at all! Why? This is related to the order in which the
rules are applied, if some rules are executed before others the operational
semantic will be incorrect:

– Typeset by FoilTEX – 23



Marc Provost Petrinets

LHS rule 1 LHS rule 2

If rule 1 is executed before rule 2

Figure 12: Rule order problem.

• We could use a layered graph grammar, that is giving priorities to the

– Typeset by FoilTEX – 24



Marc Provost Petrinets

rules. But this is incorrect. Why?

• The solution, is to add two NACs to each rule, specifying that it cannot
be applied if there is another input place with a token or another output
place without a token:

– Typeset by FoilTEX – 25



Marc Provost Petrinets

LHS

NAC:No extra input place

...

1 2 3 4 n

...

1 2 3 4 n n+1

Figure 13: We add a NAC to prevent the rule from applying if there is an
extra input place. We add a similar NAC for the output places.

– Typeset by FoilTEX – 26



Marc Provost Petrinets implementation

Petrinets implementation

• The non-graphical part of AGG (basically, the graph transformation
kernel) was linked to a petrinet graphical user interface used in CS623
(thanks to Clark Verbrugge)

• First step, create the petrinet type graph

• If we are in optimize mode, generate the rules for a preset maximal
in/out transition degree.

• Then, wait for the message “doStep” from the GUI.

• When receive the “doStep” message:

– Typeset by FoilTEX – 27



Marc Provost Petrinets implementation

– Convert the GUI petrinet representation into a valid AGG graph with
petrinet type. This will become the host graph of our graph grammar.

– If we are not in optimize mode, generate the required rules, nacs.
– Apply one step of the graph grammar. This will randomly select a

rule, until one can apply. Some enabled transition will be fired.
– Reconvert from the AGG graph to the GUI representation.
– Return the transformed graph to the GUI.

References

[1] T. S. Claudia Ermel. The agg environment: A short manual. Technical
report.

[2] A. Corradini, H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro,
and A. Wagner. Algebraic approaches to graph transformation - part

– Typeset by FoilTEX – 28



Marc Provost Petrinets implementation

I: Basic concepts and double pushout approach. In G. Rozenberg,
editor, Handbook of Graph Grammars and Computing by Graph

Transformation. Vol. I: Foundations, chapter 4, pages 247–312. World
Scientific, 1997.

[3] M. Rudolf and G. Taenzter. Introduction to the language concepts of
agg. Technical report, 1999.

– Typeset by FoilTEX – 29


