
The Unified Modelling Language

Perdita Stevens
(Perdita.Stevens@dcs.ed.ac.uk, http://www.dcs.ed.ac.uk/home/pxs/)

Division of Informatics

University of Edinburgh

Slide 1

Objectives

At the end of today:

� you will know what UML is for and its history in brief;

� you will have seen examples of all the main features of UML (though not some

of the more esoteric bits)

� you will be able to read and write simple UML models

� we will all understand more about the research agenda around UML.

Do ask questions and comment...

Slide 2

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 1

What is a modelling language?

A language for describing models of systems.

A model describes an aspect of the system at a certain level of abstraction: for

example, the class model describes the classes and their (static) relationships,

without being concerned with requirements.

Modelling languages are usually diagrammatic, because people seem to �nd this

natural.

Software engineers are used to the idea that programming languages have formally

de�nable syntax and semantics: a program may be legal or not and has a (fairly)

certain meaning.

Modelling languages are no di�erent!

Slide 3

Why do we model systems?

Two main reasons:

� To help talk about, think about and work with them before and as we build

them: in this case the model is an abstraction of a larger amount of knowledge

about the system;

� In order to be able to use them; in this case we want to be able to use the

abstraction(s) without needing to know more.

The purposes are related especially in CBD: one design criterion for a good

component is that people can understand how to use it.

Must avoid developing models that are not useful!

Slide 4

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 2

What is a good modelling language?

It should be:

1. Expressive enough: that is, we can express important aspects of the design,

and we can meaningfully reect changes in the design which we make during

analysis and design as changes in the models

2. Easy enough to use, so that it aids clear thought rather than getting in the way

3. Widely used?

4. Supported by suitable tools?

5. Unambiguous

Slide 5

Models of a system

We will want to distinguish models on several axes. For example:

� A static model describes the elements of the system and their relationships

� A dynamic model describes the behaviour of the system over time

Again, we may take a

� logical view: which parts notionally belong together?

� physical view: which parts will run on the same computer?

We probably won't need to �ll in all the squares...

Slide 6

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 3

4+1

Philippe Kruchten

� logical view: how does the system satisfy the functional requirements?

� process view: what are the threads of control?

� development view: how can the system sensibly be built?

� physical view: how will the software be deployed on hardware?

plus the use case view: what should the system achieve?

Slide 7

History of UML

1990s: many di�erent OO development methods each with their own modelling

language, including

� Booch's OOD

� Rumbaugh's OMT

� Jacobson's OOSE and Objectory

1994 Rumbaugh joined Booch's company Rational

1995 Jacobson joined Rational: announcement of Uni�ed Method, soon replaced by

Uni�ed Modeling Language.

UML1.1 adopted by OMG November 1997, followed by UML 1.3 in June 1999.

Many aws, but obviously going to dominate.

Slide 8

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 4

By the way...

Notice signi�cance of having UML instead of Uni�ed Method:

UML tells you nothing about how to develop a system. UML is not a development

method.

In the same sense, C++ tells you nothing about how to write programs. Certain

strings of symbols are legal C++ programs; a certain C++ program has a (fairly)

certain meaning; but the language does not tell you how to write the program.

Nevertheless there is a discipline of C++ programming. Some aspects are

controversial, others more or less agreed.

Same with UML: we could discuss some agreed aspects, and some approaches to

more controversial aspects...

Slide 9

Present and future of UML

As of 11/2/00, the UML Revision Task Force page lists 3316 issues, ranging from

trivial misprints to fundamental aws. Around 50 outstanding.

Current version of UML is 1.3 (June 1999). Two revision processes ongoing:

� Minor revision, 1.4

� Major revision, 2.0

(Beware: Booch Jacobson and Rumbaugh's UML User Guide says it's up to date

with respect to 1.3 { this is based on a mistaken anticipation of when that would

appear!)

Slide 10

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 5

Books and other resources

Vast range. Extremes:

� Using UML: textbook aimed at students, even inexperienced ones

� The o�cial speci�cation, which makes no concessions.

There are also huge numbers of books aimed at professionals. Two deserve special

mention:

� Booch Jacobson Rumbaugh UML User Guide, Reference, and Process book.

� Fowler UML Distilled

Web sites: various, including OMG, Rational, UML RTF. See my book page

(www.dcs.ed.ac.uk/home/pxs/Book/) for links.

Slide 11

What is an object?

Something you can do things to.

An object has state, behaviour and identity.

State can a�ect behaviour.

Behaviour can a�ect state.

Objects communicate by sending messages: the behaviour of an object on receipt

of a message is \up to the object".

A class de�nes the structure and behaviour of similar objects. (That is, their

implementation, not just the interfaces they provide.)

Slide 12

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 6

A class

Book

A class as design entity is an example of a model element: the rectangle and text

form an example of a corresponding presentation element.

UML explicitly separates concerns of actual symbols used vs meaning.

Slide 13

An object

jo : Customer

This pattern generalises: always show an instance of a classi�er using the same

symbol as for the classi�er, labelled instanceName : classi�erName.

Slide 14

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 7

Classifiers and instances

An aspect of the UML metamodel (more anon) that it's helpful to understand up

front.

An instance is to a classi�er as an object is to a class: instance and classi�er are

more general terms.

(In the metamodel, Class inherits from Classi�er, Object inherits from Instance.)

We'll see many other examples of classi�ers.

Slide 15

Showing attributes and operations

Book

title : String

copiesOnShelf() : Integer
borrow(c:Copy)

Notice how argument types and return types are shown (can be adapted for

di�erent programming languages.)

They may be omitted (together) { oddly though, the formal parameter name is

compulsory when the argument list is given.

Slide 16

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 8

Visibility

Book

+ title : String

- copiesOnShelf() : Integer
borrow(c:Copy)

Can show whether an attribute or operation is

� public (visible from everywhere) with +

� private (visible only from inside objects of this class) with �

(Or protected, with hash, or other language dependent visibility.)

Can show abstract operation or class using italics for the name.

Can add further labelled compartments for other purposes (e.g. responsibilities.)

Slide 17

Association between classes

BookCopy
is a copy of

This generalises: association between classi�ers is always shown using a plain line.

An instance of an association connects objects (e.g. Copy 3 of War and Peace with

War and Peace).

An object diagram contains objects and links: occasionally useful.

(However in the metamodel an association is not a classi�er...)

Slide 18

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 9

Rolenames on associations

Director of
Studies

StudentdirecteeDoS

Can show the role that one object plays to the other.

Useful when documenting the class: e.g. a class invariant for DirectorOfStudies

could refer to the associated Student objects as self.directee (a set, if there can be

more than one).

Slide 19

Multiplicity of association

LibraryMember

MemberOfStaff

Book

Copy

Journal

1

1..*

1 0..*

1 0..*

borrows/returns

borrows/returns

borrows/returns
1

0..*

is a copy of

Commas for ranges, two dots for ranges, * for unknown number.

E.g. each Copy is a copy of exactly one Book; there must be at least one Copy of

every Book.

Slide 20

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 10

Generalisation

LibraryMember

MemberOfStaff

This generalises: generalisation between classi�ers is always shown using this arrow.

Slide 21

Appropriate inheritance

Powerful reuse mechanism but very dangerous because of tight coupling.

cf the fragile base class problem: altering the base class a�ects all its subclasses.

\Implementation inheritance" where a class inherits from another not because they

are related by a conceptual generalisation relation but just for code reuse, is usually

a bad idea.

Overuse of inheritance is probably the single major problem encountered by new

OO developers.

Slide 22

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 11

Overusing generalisation

Suppose I'm developing a personal organiser application, and I want to implement

an appointments diary using the class LinkedList.

I should not make the relationship between AppointmentsDiary and LinkedList be

a generalisation!

Why not? Because this isn't conceptually a generalisation relationship: it isn't true

that an appointments diary is a kind of linked list.

It's tempting, and I've succumbed, because it saves writing one-line wrapper

methods for things like add and next { but when I've done this kind of thing I've

always regretted it. One of the problems is that you have no option but to expose

the whole of the linked list interface, even if (say) you didn't want to allow things

in the system to access the number of appointments. This kind of additional

dependency can make it hard to alter the implementation later.

Slide 23

Liskov substitutivity

It is surprisingly di�cult to come up with a precise de�nition of when subclassing

is safe. Liskov substitutivity is a popular attempt.

Suppose some program expects to interact with an object of class C, and

that instead it is given an object s of class S, a subclass of C.

If Liskov substitutivity holds, there is some object c of class C which could

be used instead of s without altering anything about the behaviour of the

program.

Exercise: play with this idea.

Slide 24

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 12

Interfaces

In UML an interface is just a collection of operations.

pr
in

ts

Stringifiable

<<interface>>
Stringifiable

stringify() : String

Module

stringify() : String

Printer

...

<<uses>>

...

Slide 25

Designed relationships between classes

So far we've dealt with what Fowler calls the conceptual model. We've identi�ed

the key domain abstractions and the conceptual relationships between them.

Here we look at more advanced features of class models, especially at how to record

information pertaining to the design.

Slide 26

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 13

Dependencies

To make the system maintainable we want to minimise the dependencies between

parts of the system. Not all \real world" connections are reected in the system.

A is dependent on B if a change to B may force a change to A.

What counts as a change is context-dependent.

Aim to avoid complex dependencies especially circular ones.

Slide 27

Dependencies in UML

Dependencies are shown using a dotted arrow:

A B

We've seen them between use cases and between a class and an interface: used

generally for \relationship not otherwise speci�ed".

Note that some dependencies are implied, and need not be repeated: for example

any class depends on its superclasses.

Slide 28

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 14

Navigability

Student Moduleis taking

1..* 6

When should the navigability of an association be decided?

Some experts believe vehemently that you should never identify an association

without deciding its navigability. Others disagree.

\As early as possible, but no earlier."

Slide 29

An aggregation relationship

HonoursCourse Module
1..* 6..*

Non-exclusive part relationship.

A common fault is identifying too many aggregations. If in doubt use plain

association.

Slide 30

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 15

An composition relationship

Board Square
9

1

Exclusive part relationship.

Slide 31

A qualified association

Board row:{1,2,3}
column:{1,2,3}

Square
11

Given a Board and a row and a column, can identify a Square.

Slide 32

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 16

A derived association

Student Moduleis taking

Lecturer

teaches course/teaches student

Record the association, but also that it's not independent.

Slide 33

An association class

Student Moduleis taking

is taking

mark : int

1..* 6

as opposed to

Slide 34

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 17

Student Moduleis taking

mark : int

Mark

1 1

6 1..*

61..*

Slide 35

A parameterised class

T
List

add(t:T, pos:int)
get(i:int) : T

List<Game>

StudentList

<<bind>>(Student)

Slide 36

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 18

Interlude...

Slide 37

Use cases

document the behaviour of the system from the users' points of view. They help

with three of the most di�cult aspects of development:

� capturing requirements

� planning iterations of development which are good for users

� meaningful system testing

They were �rst introduced by Ivar Jacobson (early 90s), developing from scenarios.

They are independent of OO { strength or weakness??

Simple use case diagrams are easy to understand: can be useful for communication

between customers and developers.

Slide 38

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 19

A simple use case diagram

Browser

Librarian

JournalBorrower

BookBorrower

Reserve book

Borrow copy of book

Return copy of book

Extend loan

Borrow journal

Update catalogue

Browse

Return journal

Slide 39

Actors

An actor is shown in a use case diagram as a stick �gure. An actor can be:

� a human user of the system in a particular rôle

� an external system, which in some rôle interacts with the system.

Or more speci�cally, a particular kind of user. For example, the bank has many

customers, but we only show one Customer actor on the use case diagram.

The same human user or external system may interact with the system in more

than one rôle: he/she/it will be (partly) represented by more than one actor. (e.g.,

an bank teller may happen also to be a customer of the bank).

Slide 40

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 20

What is a use case?

A use case is shown on a use case diagram as a named oval. The name describes

some coherent work unit of the system which has value for an actor, e.g. Borrow

copy of book.

The use case includes a (textual) description of the (a?) sequence of messages

exchanged between the system and any actors, and actions performed by the

system, in order to realise the functionality.

It may include logic to handle unusual or alternative courses, e.g. \if the

BookBorrower has the maximum number of books on loan already, refuse this

loan" even though these may result in the actor being unsatis�ed.

A use case may be associated with other UML models which show how it is realised.

Slide 41

Requirements capture

Use cases can help with requirements capture by providing a structured way to go

about it:

1. identify the actors

2. for each actor, �nd out

� what they need from the system

� any other interactions they expect to have with the system

� which use cases have what priority for them

There may be aspects of system behaviour that don't show easily show up as use

cases for actors.

Slide 42

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 21

Politics

If we capture requirements in terms of use cases, we should understand what is

important to whom.

Make sure system delivers added value:

� soon

� to all the people who might scupper it

� in every iteration

Result: the project isn't cancelled. Supposedly...

Slide 43

Analysis vs design

Some actors are part of the requirements: usually the ones who derive bene�t from

a use case.

Others are part of the (business process) design: the ones who interact with the

computer system to provide the bene�t.

For example, consider a FindBook use case of a library, in which the user enters

details of a book and wants to end up with a copy of it. Maybe the system will give

the user directions to where the book is on the shelf. Maybe it will alert a librarian

to go and fetch it. In the latter case, should the librarian be shown as actor? In

some sense, the choice is a design decision.

Slide 44

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 22

Using use cases in development

Use cases are a good source of system tests: requirements documented as desired

interactions, which translate easily into tests.

Earlier, they can help to validate a design. You can walk through how a design

realises a use case, checking that the set of classes provides the needed functionality

and that the interactions are as expected.

Use cases are not limited to documenting the whole system: they may also

describe, e.g.

� subsystems

� classes

� COMPONENTS.

Slide 45

What use cases are not

Use cases document the requirements of a system: not the whole business process

into which the system �ts.

For example, UML does not permit associations between actors: you cannot legally

use a use case diagram to show an interaction between two humans followed by one

of them using a system. (E.g. can't legally show librarian and library member as

separate actors in Borrow Book, if only the librarian interacts directly with the

system.)

There are proposed extensions to UML to allow business process modelling, not

considered here.

Slide 46

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 23

CBD at the very beginning

We've seen simple use cases. But how can we record which use cases have

behaviour in common, or show reuse of components?

Note:

� UML's notation for relationships between use cases has recently changed.

� Even now there are black holes: the formal distinction between the two

mechanisms we're about to cover is far from clear.

� Using this extra notation makes use case diagrams less immediately

understandable.

Slide 47

Use cases as collections of scenarios

Recall that a use case may include qualitatively di�erent scenarios, e.g. including

reaction to error conditions.

Each scenario is viewed as a sequence of actions which are communications between

the system and the actors.

(However, beyond that level UML's de�nition gets informal, even vague...)

Slide 48

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 24

Use case reuse: �include�

<<include>>

<<include>>

Extend loan

Check for reservation

BookBorrower

Borrow copy
of book

Purpose: to demonstrate commonality between use cases, or the use of an existing

component.

A scenario in the base use case (e.g. Extend loan) gets to a certain point, then

follows a scenario in the included use case, then returns to the original point and

continues with the base use case scenario.

Slide 49

�extend�

BookBorrower

<<extend>> Refuse loan

Borrow copy of book

Purpose: to show special case behaviour.

Note direction of dependency arrow: the extending use case may depend on the

main use case but not the other way round.

Slide 50

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 25

�extend�

BookBorrower

<<extend>> Refuse loan
Borrow copy of book

extension points
too many books

Optionally, we can document the decision point.

Slide 51

Generalisation of actors

BookBorrower

JournalBorrower

Slide 52

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 26

Use case driven development?

use case-driven In the context of the software development life cycle, a process

in which use cases are used as a primary artefact for establishing the desired

behaviour of the system, for verifying and validating the system's architecture,

for testing, and for communicating among the stakeholders of the project.

from Booch Jacobson Rumbaugh UML User Guide

Traceability is mentioned in passing under RUP, but is a major bene�t of this

approach.

However, the use case model must be used in conjunction with the class model:

cannot identify reuse from use case diagram alone!

Slide 53

Shortcomings

1. Danger of losing OO: plan focus on use cases may encourage a top-down

functional view of the system

2. Danger of mistaking design for requirements

3. Danger of missing requirements

Use use cases to guide a disciplined OO development { don't let them be the

development.

Slide 54

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 27

Extensibility of UML: stereotypes

We've now seen one mechanism by which UML is extensible: stereotypes.

�include� and �extend� are prede�ned parts of UML, but you can de�ne your

own too.

A stereotype makes the model element to which it is attached more speci�c in a

user de�ned way. For example, if you decide you'd like to distinguish between

actors who are bene�ciaries and others, you could invent a stereotype

�bene�ciary� of actor.

Can de�ne new graphical icons for the stereotyped model element.

Slide 55

Comments and constraints

Used to add to a UML model information not (easily) expressible in UML.

Copy
is a copy of

Book

Journal

is a copy of

{or}

0..1

0..1

1..*

1..*

each volume
separately

Write the constraint or comment in whatever language (natural or formal) is

appropriate.

Slide 56

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 28

Constraints in a UML model

Constraints allow you to give more information about what will be considered a

correct implementation of a system described in UML.

Speci�cally, they constrain one or more model elements, by giving conditions which

they must satisfy.

They are written in an appropriate language, enclosed in set brackets and attached

to the model in some visually clear way.

We'll consider OCL later.

Slide 57

CRC cards

Class, Responsibilities, Collaborations

Originally introduced by Kent Beck and Ward Cunningham as an aid to getting

non-OO programmers to \think objects".

Also useful for validating the class model against the use case model.

We'll see how to record much of the information produced using CRC cards in

UML interaction diagrams.

CRC cards are an aid to clear thought, not a formal part of the design process {

though UML does permit you to record the information from them in the class

model, if you wish.

Slide 58

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 29

Examples

LibraryMember

Responsibilities Collaborators

Maintain data about copies currently borrowed

Meet requests to borrow and return copies Copy

Copy

Responsibilities Collaborators

Maintain data about a particular copy of a book

Inform corresponding Book when borrowed and returned Book

Book

Responsibilities Collaborators

Maintain data about one book

Know whether there are borrowable copies

Slide 59

Interaction diagrams

describe the dynamic interactions between objects in the system, i.e. the pattern of

message-passing. They let you record how you wave CRC cards around!

Two main uses:

� Showing how the system realises [part of] a use case

� Showing how an object reacts to some message

Particularly useful where the ow of control is complicated, since this can't be

deduced from the class model, which is static.

UML has two sorts, sequence and collaboration diagrams { the di�erences are

syntactic.

Slide 60

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 30

Developing an interaction diagram

1. Decide exactly what behaviour to model.

2. Check that you know how the system provides the behaviour: are all the

necessary classes and relationships in the class model?

3. Name the objects which are involved.

4. Identify the sequence of messages which the objects send to one another.

5. Record this in the syntax of a sequence or collaboration diagram.

Slide 61

A collaboration

LibraryMember

Copy

theBook : Book

theCopy :theLibraryMember :

aMember : BookBorrower

Slide 62

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 31

An interaction on a collaboration

LibraryMember

Copy

theBook : Book

theCopy :theLibraryMember :

aMember : BookBorrower

borrow(theCopy)

1: okToBorrow

2 :borrow

2.1: borrowed

Slide 63

Sequence diagram of same interaction

LibraryMember

theLibraryMember : CopytheCopy : theBook : Book

borrow(theCopy)

1: okToBorrow

2: borrow
2.1: borrowed

aMember : BookBorrower

Slide 64

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 32

Showing more detail

�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

borrow(theCopy)

2: borrow
2.1: borrowed

:LibraryMember :Copy : Book

1: okToBorrow

aMember : BookBorrower

Slide 65

Creation/deletion of objects in sequence diagram

:Lecturer

:DirectorOfStudies

:UTO
1: n := getName()

2: new DirectorOfStudies (n)

3:destroy()

Slide 66

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 33

Creation/deletion of objects in collaboration diagram

:Lecturer

:UTO

1: n := getName()

{destroyed}

:DirectorOfStudies {new}

3:destroy()

2: new DirectorOfStudies (n)

Slide 67

Designing interactions

EverythingController

getJC(j:Job) : JobController
1

JobController

1

Job

1

0..*

0..*0..*

Problems?

Slide 68

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 34

Law of Demeter

in response to a message m, an object O should send messages only to the

following objects:

1. O itself

2. objects which are sent as arguments to the message m

3. objects which O creates as part of its reaction to m

4. objects which are directly accessible from O, that is, using values of attributes

of O.

Slide 69

Collaboration diagram or sequence diagram?

An interaction can be shown on a collaboration diagram or on a sequence diagram.

They show almost the same information.

� Collaboration diagrams are better at showing the links between the objects.

� Sequence diagrams are better for seeing the ordered sequence of messages that

passes.

We haven't (yet) talked about generic interaction diagrams which allow you to

show many possibilities on one diagram: sequence diagrams support these much

better than collaboration diagrams.

Slide 70

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 35

Showing timing constraints

LibraryMember

theLibraryMember : CopytheCopy : theBook : Book

borrow(theCopy)

1: okToBorrow

2: borrow
2.1: borrowed

{C - A < 5 sec}

aMember : BookBorrower

C

A

{borrowed’ - borrowed < 1 sec}

Slide 71

Conditional message send

[i = 0] foo()

[i = 1] bar()

m : Mung

[i = 0] foo()

[i = 1] bar()

m : Mung

Slide 72

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 36

Parallel universes

m : Mung f : Froboz

7.1:[i = 0] foo()

7.2:[i = 1] bar()

Slide 73

Iteration

3.1:*[i := 1..2] a()

:Foo :Bar :Baz

3.1.1:b()

3.1:*[i := 1..2] a()

3.1.1:*[i := 1..2] b()

:Foo :Bar :Baz

Slide 74

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 37

Asynchronous messages

Ada Lovelace : CS4Student Dr. J. Bloggs : CS4DirectorOfStudies

:DirectorOfStudies

email

confirmChoice(m1,...,m6,self)

chooseModules(m1,...m6)

:Student

Slide 75

Interlude...

Slide 76

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 38

Effects of interactions on objects

So far we've seen how to model:

� the requirements of the system with use cases

� the structure of the system with a class model

� the interactions between objects with interaction diagrams

Interactions describe how an object reacts to an event that forms part of that

particular interaction. (\What happens next?")

But what determines this? In particular, the same object may react to the same

event in di�erent ways, depending on its internal state.

We model this using state diagrams.

Slide 77

State diagrams

Useful for showing the way that an object of a given class changes state, if it has

qualitatively di�erent internal states. May include:

� states

� events that cause transitions between states

� guards that must be true for a transition to take place

� actions that are caused by a given transition

� activities that take place when in a certain state

� start and end markers

States may be nested, but most classes will not need statecharts drawn for them.

Slide 78

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 39

A simple state diagram

return()

borrow()

on loan on the shelf

Slide 79

State diagrams as abstractions

If we could draw in�nitea diagrams, we could represent each set of values for an

object's attributes and links as a separate state and show exactly what happens

when the object receives each message. We could include as much detail as the

code.

In practice, a state represents an equivalence class of attribute (and link) values:

objects which behave qualitatively the same way are in the same state.

That is, a real state diagram represents an abstraction of the \ideal" (and useless!)

state diagram.

aOK, computers are �nite...

Slide 80

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 40

So which abstraction?

Formally, could classify objects in di�erent ways, getting di�erent state diagrams

for the same class. That is, we could choose di�erent abstractions.

As always the right one is the one that answers the questions of someone using the

diagram. This might be:

� the person who must code the class

� a client, writing code that will interact with the class

Di�erences in what they need to know?

Slide 81

State diagram showing actions

on loan on the shelf
return()/^book.returned(self)

borrow()/^book.borrowed(self)

Slide 82

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 41

Transitions in more detail

When an object passes from one state to another it does so as a result of an event,

e.g. receiving a message. In addition to changing state, the object may react in

some way e.g. by sending a message. Such (re)actions are shown after the slash:

event/action.

Sometimes an event causes a state change only if a guard is satis�ed. The guard is

shown: event[guard] / action.

An event is something done to the object:

an action is something the object does.

Slide 83

State diagram for Book, with guards

not borrowable borrowable
returned()

borrowed()[last copy]

returned()

borrowed()[not last copy]

Slide 84

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 42

State diagram showing entry actions

return()

borrow()

on loan on the shelf

entry/book.borrowed(self) entry/book.returned(self)

Slide 85

Activity diagrams

Useful as an alternative to interaction (sequence or collaboration) diagrams for:

� detailing a use case

� explaining an an object's reaction to a message

Also useful for showing the dependencies between use cases: e.g. workow of an

organisation.

Main advantage: can show parallel activities, so make dependencies and

non-dependencies explicit.

Main disadvantage: correspondence with objects in the system may not

automatically be clear. (Swimlanes, which for reasons of time we leave out, can

help.)

Slide 86

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 43

Activity diagram

prepare for
next member

find book on shelf

wait in queue

borrowing

record

record
return

put book back
on shelf

[borrower]

[returner]

[returning]

[borrowing]

member librarian

Slide 87

The development view

Recall the 4+1 view model:

� logical view: how does the system satisfy the functional requirements?

� process view: what are the threads of control?

� development view: how can the system sensibly be built?

� physical view: how will the software be deployed on hardware?

plus the use case view: what should the system achieve?

So far we've really only considered 2+1.

Slide 88

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 44

Component diagrams

show dependencies between software components.

A component may be

� source code (some sensible implementation unit of it, e.g. the code for a given

class, or perhaps a start-up shell script)

� binary code (e.g. a class library)

� an executable (e.g. a bought-in spreadsheet).

We'll only consider compilation dependencies (so nothing will depend on an

executable, unless it's a compiler!).

Slide 89

A component diagram

streams.o

library>><<

MyApp

<<executable>>

MyIO
<<link>>

<<compile>>

Slide 90

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 45

Implementing components

To build a component you need to specify and design it, and you want to have a

clear boundary between this component and any other.

UML packages give separate namespaces for this purpose.

A UML subsystem is a kind of package which can have instances: it's particularly

useful for modelling components.

Slide 91

Packages

P

Q

A

foo:??

B

C

R

D

E

S

Packages can appear on (almost) any diagram if convenient, and can enclose any

\sensible" collection of model elements.

Slide 92

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 46

Physical view

It's too easy to forget that software runs on hardware!

Somewhere early in the process you must have considered, for example, the

processors needed and the network: achieving decent performance is otherwise

impossible. This is outside the scope of the course, however: here we just glance at

the UML facilities for recording such things.

Slide 93

Deployment diagram

The deployment diagram shows the relationships between physical machines and

processes, e.g. what runs where.

Boxes represent run-time processing elements, usually computers.

Lines between boxes (associations) represent physical communication links.

Components that have a run-time existence (i.e. that don't get compiled away) can

be shown in the nodes.

Slide 94

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 47

Deployment diagram: hardware only

<<LAN>>

ether C
craro : PCshillay : Workstation

Slide 95

Deployment diagram showing software

P2:PllayerInterface

OXO:GameEngine

P1:PlayerInterface

shillay : Workstation
craro : PC

<<LAN>> ether C

Slide 96

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 48

A Rose-style deployment diagram

server

Scheduler
MeetingsDB
PersonalPlanner

dumb
terminal

workstation

PersonalPlanner

Slide 97

Summary of elements of UML

� Use case diagram

� Class diagram

� Behaviour diagrams:

{ Interaction diagrams:

� sequence diagram

� collaboration diagram

{ state diagram

{ activity diagram

� Implementation diagrams:

{ component diagram

{ deployment diagram

Slide 98

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 49

Summary

The industry standard modelling language UML provides a language in which to

talk about designs. It doesn't say anything about how to get the designs.

(Compare English: it doesn't tell you what to say, but you do know whether a

sentence is English or not, with some tolerance.)

If we'd had a week rather than a day we'd also have talked more about various

aspects of the development process, which is concerned with how we get designs

and programs:

� architecture-centric component based development

� example Methodology: Objectory, Catalysis

� use case analysis

� CRC cards

� design patterns

Slide 99

� achieving reuse

Slide 100

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 50

Interlude...

Slide 101

Research and UML

What is the research agenda concerning UML?

Obviously it depends whom you ask. But as I'm in charge here:

� UML provides an important opportunity for TCS to show its worth. At last we

have a language which is

{ formal enough to provide ground to stand on;

{ very widely used: makes e�ort spent on language-speci�c issues worthwhile

� But there are signi�cant dangers of blowing it. E.g. by:

{ trying to sell formalism for formalism's sake;

{ failing to appreciate that certain decisions have already been made whether

we like them or not;

{ not doing things which are exciting enough;

{ doing things that won't ever help actual software engineering practice.

Slide 102

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 51

Familiarity with the standard is prerequisite so let's start there.

Slide 103

How UML is defined

Two main documents:

� Notation Guide : informal explanation of notation (concrete syntax) and its

connection to abstract syntax.

� Semantics : semi-formal speci�cation of abstract syntax, plus further

explanation of semantics.

Semantics takes precedence over Notation Guide in cases of conict { theoretically.

Plus: de�nition of the Object Constraint Language (OCL).

Slide 104

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 52

Reading the UML semantics document 1

The abstract syntax describes (in UML!) the relationships between kinds of UML

model elements (the metamodel). For example, use cases, actors and classes are all

said to be examples of classi�ers:

Classifier

Class Actor UseCase

Slide 105

Reading the UML semantics document 2

Well-formedness rules put further restrictions on what it means to be a correct

UML model.

For example, a constraint on a Generalization states:

self.subtype.oclType = self.supertype.oclType

This expresses concisely that even though a Generalization can exist between

classes or between actors, a class cannot be a generalization of an actor, etc.. (self

refers to the Generalization; the abstract syntax de�nes that any Generalization is

associated with two GeneralizableElements referred to as subtype and supertype;

the oclType of any class is Class, etc.)

The section Semantics contains a variety of further explanation, in English.

Slide 106

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 53

Object Constraint Language

The well-formedness rules are given in a language called OCL.

Unfortunately on a formal level, OCL was developed (from a previously existing

speci�cation language) simultaneously with UML, and it too has unresolved

problems!

OCL does not (yet) have a formal semantics. Thus though you will hear it

described as a formal speci�cation language, this is at best dubious.

Issues:

� does a given design model a given OCL statement?

� what are the proof rules for OCL?

� what is the type system for OCL?

and do they have the appropriate properties?

...

Slide 107

Semantics for UML(?)

Very controversial:

� does UML need a formal semantics at all?

� if so, of what kind?

� WHAT FOR?

There is a lot of work in the area.

NB need to read the semantics document!

But let's not get carried away:

semantics for UML is only

one possible research area...

Slide 108

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 54

Supporting Software Design

Present-day CASE tools are very limited.

Major issues of the moment include usability, being up to date with the standard,

performance, price.

More interesting to us perhaps: power.

How can the practice of mainstream software design can be well supported by

formal techniques?

Two possible approaches:

1. \Money no object": how can formality help raise the ceiling, increase the

maximum dependability of systems? \Formal methods"

2. How can formality help without raising cost or requiring software engineers to

be more mathematically oriented than they are now?

I'm personally most interested in 2.

Slide 109

Some open questions

1. How can what-if experiments be made easier? To what extent could a tool

suggest scenarios which should be explored, provide support in exploring the

dynamic implications of earlier decisions, etc.?

2. How can design by contract be supported?

� Languages for appropriate contracts, which a tool can treat as formal

statements, without requiring the designer to learn a formal language?

� Un�nished design? Tool must support the identi�cation of (in)dependent

elements, and must not simply give up in the case of a possibly violated

contract.

3. How can we ease the use and development of components and other chunks of

designs, such as product-line architectures (PLAs) and frameworks?

� complex interfaces (not just single operations)

� restrictions on how choices are resolved (e.g. who chooses?)

Slide 110

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 55

� exploring, and perhaps changing or making explicit, the assumptions made

about the environment.

Slide 111

Current state and progress

Some things it's clear tools could do now, without further theoretical progress:

� more ambitious sanity checking of models - provided can avoid ambiguities in

semantics e.g. what associations mean...

� animation - in practice, how useful is this?

� any amount of model checking, provided the user agrees with your

interpretation of the semantics

� more code generation - but it's easier to write code than UML models so

maybe demand for this is limited

Challenge: do something useful enough.

I'm exploring how games may help in exploration of consequences of design

decisions... watch this space.

For now, let's focus close to home on design by contract using OCL.

Slide 112

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 56

Design by Contract

The key is to avoid ambiguous situations in which something goes wrong but there

are several views about whose faults it is.

By making explicit the contract between supplier of a service and the client, D by C

� contributes to avoiding misunderstandings and hard-to-track bugs;

� supports clear documentation of a module { clients should not feel the need to

read the code!

� supports defensive programming;

� allows avoidance of double testing.

Slide 113

Example: class invariants

A class invariant restricts the legal objects by specifying a relationship between the

attributes and/or the attributes of associated classes.

Simple example: the class invariant

fname is no longer than 32 charactersg

could be applied to a class Student which has an attribute

name : String

to forbid certain values of that attribute.

Implementors of the class must ensure that the invariant is satis�ed (when?)

Clients of the class may assume it.

Slide 114

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 57

Less simple example

Suppose our class Student is associated with classes DirectorOfStudies and also

with Lecturer by tutor { a student has a DoS and a tutor.

Suppose it is forbidden for the student's DoS and tutor to be the same person.

We can represent this by a class invariant on Student, say

f student's tutor and DoS are di�erent g

(Is this su�ciently unambiguous?)

Slide 115

Constraining implementations of operations

We can constrain the behaviour of operations using pre and post conditions.

A pre condition must be true before the operation is invoked { it is the client's

responsibility to ensure this.

A post condition must be true after the operation has been carried out { it is the

class's implementor's responsibility to ensure this.

E.g.

Module::register(s : Student)

pre : s is not registered for the module

post : the set of students registered for the module is whatever it was before plus

student s.

Slide 116

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 58

Subcontracting

When a subclass reimplements an operation it must ful�ll the contract entered into

by its base class { for substitutivity. A client must not get a nasty surprise because

in fact a subclass did the job.

Rule of subcontracting:

Demand no more: promise no less

It's OK for a subclass to weaken the precondition, i.e. to work correctly in more

situations... but not OK for it to strengthen it.

It's OK for a subclass to strengthen the postcondition, i.e. to promise more

stringent conditions... but not OK for it to weaken it.

Slide 117

Languages for contracts

Writing contracts in English can be

� ambiguous

� long-winded

� hard to support with tools

Sometimes it's desirable to use a mathematically-based language { but such

languages can be hard to learn.

OCL aims to be both formal and simple.

Slide 118

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 59

OCL basic types

� Boolean

� String

� Integer

� Real

With all the operations you'd expect.

Integer is considered a subtype of Real.

(Remark: OCL uses the terms class and type interchangeably, which is just about

OK in this context, though normally a big mistake.)

Slide 119

Example: pre and post conditions

Stove::open()

pre : status = #off

post : status = #off and isOpen

ElectricStove::open()

pre : temperature <= 100

post : isOpen

Do you have to re-specify the inherited precondition? Yes { not to do so is just too

confusing. So instead include the status = #off everywhere.

Slide 120

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 60

OCL collection types

� Collection

� Set

� Bag

� Sequence

with the usual operations (size, includes, isEmpty, ...)

Things that would be collections of collections are \automatically attened" { OCL

cannot talk about a sequence of sets, etc.!!

Slide 121

Navigation

An OCL expression in the context of one class A may refer to an associated class B.

Director of
Studies

StudentdirecteeDoS

Single (? - 1) association: straightforward, since any object of class A determines

just one object of class B:

� If there's a rolename use it, e.g. self.DoS.name

� If not may just use classname, e.g. self.directorOfStudies.name

Slide 122

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 61

More navigation

What if the association is not (? - 1)? E.g. consider the same association from the

point of view of the DirectorOfStudies { a DoS may direct many Students.

For each DirectorOfStudies the rolename directee refers to a set of Students. Use

OCL collection operations, e.g.

� self.directee->forAll (regNo <= 200000)

� self.directee->notEmpty

(If you use a collection operation on something that isn't a collection it gets

interpreted as a set containing one element!)

Slide 123

The plot thickens

What happens if we take more than one \hop" round the class diagram?

e.g. what is self.student.module?

It should be a set of sets, but OCL doesn't have them!

So it's a bag.

Tempting to regard this as a bug, but it's very convenient in practice; what is the

right compromise?

Slide 124

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 62

Using operations in OCL

Consider an operation register(s:Student) of Module. Should we be able to

refer to this operation in an OCL expression?

Problem: it does something { alters the state of the Module. When should this

happen, if at all?

Only good way round this is to allow in OCL only operations that guarantee not to

alter the state of any object.

Such operations are known as queries { in UML an operation (in fact any

BehavioralFeature) has an attribute isQuery which must be true for the operation

to be legal in OCL.

(UML doesn't currently specify that such operations should guarantee to

terminate, but presumably it should. Is there a problem with inheritance?)

Slide 125

Beyond OCL

Current activity in the UML RTF is focusing on dealing with OCL issues one at a

time.

Personally I think something more radical is required, maybe in UML2.0...

As well as a better OCL, what more might be useful for design by contract?

Languages for expressing more than one can in OCL... with temporal features?

with independence?

Challenge: keep these usable by developers and supportable by tools.

Slide 126

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 63

Conclusion

Now:

� you know what UML is for and its history in brief;

� you have seen examples of all the main features of UML (though not some of

the more esoteric bits)

� you can read and write simple UML models

� we all understand more about the research agenda around UML!

Thank you for participating.

Slide 127

cPerdita Stevens 2000 ETAPS2000 UML Tutorial 64

