A Generic Difference Algorithm for
UML Models

Sherif Luka

T McGill

&W Presentation Overview

" Related Work

= X-Diff

" FUJABA Difference algorithm
" Demo

" References

&M Related Work

1. GNU diff utility uses the LCS (Longest
Common Subsequence) algorithm to
compare two plain text files.

2. CVS (GNU utility) uses diff to detect
differences between two version of
programs.

" Why don’t we simply use these tools?

3. AT & T Internet Difference Engine uses
Html Diff. Why not use this for XML?
Markups in XML provide context and
contents within different markups can’t be
matched

w Related Work

Zhang and Sasha proposed a fast algorithm to
detect changes in XML documents using ordered
labeled trees. (They use minimum cost editing
distance). They find an optimal edit script in O(n1 *
n2 * min (depth(T1), leaves(T1)) * min (depth (T2),
leaves (T2)))

+. Chawathe et al, presented a heuristic algorithm,
MH-Diff, to detect change in unordered structured
documents (edit script as an edge cover of a
bipartite graph). Worst case running time : O(n3)

&M Related Work

1.

XML TreeDiff: May not produce an
optimal result, and it uses Z and S (4)
algorithm, and it works with ordered
frees.

Cobena et al proposed XyDiff which
uses a greedy approach and thus can
not guarantee any form of optimal or
near optimal result.

&W X-Diff (XML differences)

XML has become the standard format for web publishing
and data transportation.

" Previous work in XML change detection used an ordered
tree model.

" X-Diff uses an unordered model. It produces more
accurate results although the algorithm is substantially
harder than in ordered models. ? NP-Complete)

" But because XML documents have certain features it is
§033|ble to compute the optlmal difference between two
ML documents in polynomial time.

&M Example

" Assume that you have an online auction
site equipped with a search engine and
a change detection tool.

" A parent is interested in buying books

for his child. 7
Z5)
$ -

<Books>
<Book>
<Title>Harry Potter and the Sorcerer's Stone</Title>
<Author=J.K. Rowling</Author=>
<Seller>
<ID>Mike</ID=>
<Rating>30</Rating>
</Seller>
<First Bid>$5.00</First Bid>

<Current_Bid Time_Left = “36 hrs.”>$8.50</Curent_Bid>

<Bidder>
<ID=>Steve</ID=>
<Rating>25</Rating>
</Bidder>
</Book>
<Book>
<Title>The Adventures of Tom Sawyer</Title>
<Author>Mark Twain</Author=>
<Seller=
<ID>Sean</ID>
<Rating=100</Rating>
</Seller>
<First Bid>$2.00</First Bid>
<Current_Bid Time_Left = "4 hrs.”>$3.50</Current_Bid>
<Bidder>
<ID>Tim</ID>
<Rating>5</Rating>
</Bidder=>
</Book>
=/Books>

<Books>
<Book>
<Title>The Adventures of Tom Sawyer</Title>
<Author=Mark Twain</Author>
<Seller>
<ID>Sean</ID>
<Rating>100</Rating>
</Seller=
<First Bid=$2.00</First Bid>
<Current Bid Time Left =2 hrs.”>$4.50</Current Bid>
<Bidder> - T
<ID=Tim=/TD=
<Rating>5</Rating>
</Bidder>
</Book>
<Book>
<Title=Harry Potter and the Sorcerer's Stone</Title>
<Author>J.K. Rowling</Author>
<Seller>
<ID>Mike</ID>
<Rating>30</Rating>
</Seller>
<First_Bid=$5.00</First Bid>
<Current Bid Time Left =34 hrs.”>$10.00</Current Bid>
<Bidder> - -
<ID>Mark</ID>
<Rating>125</Rating>
</Bidder>
</Book>
</Books>

Figure 1.1 A piece of auction data of old version

Figure 1.2 A piece of auction data of new version

Advantages of a Change
&WM Detection Tool like X-DIFF

1. Incremental Query Evaluation:

When a user has a standing query
against a time-varying data source, a
change detection tool can provide the
qguery engine with delta data (Much
faster!).

3. Irigger Condition Evaluation:

Continuous query s/s, condition of
firing Is dependant on specific data
changes.

X-Diff (Tree Representation of
&M XML Documents)

= XML documents have a hierarchical structure.
Based on DOM, an XML document can be
presented as a tree.

" There are three kind of nodes in DOM tree:
. Element Nodes: non-leaf nodes with name.
>, Text Nodes: leaf nodes with value.

5. Attribute Nodes: leaf nodes with name and
value.

" Two Trees are isomorphic if they are identical
except for the ordering of siblings. X-Diff

considers two trees are equivalent if they are
Isomorphic.

&M X-Diff (Edit Operations)

Insert(x(name,value),y)

.
2. Delete(x)

5. Update (x,new_value)
4. Insert (Tx,y)

5. Delete (Tx)

Note:

" No need to specify which position among y’s
child nodes to insert node x.

" There are no “move” operations, which transfer
a node or a subtree from one position to
another (replace with a combination of delete

AanAd incart nnaratinne)

&W X-Diff (Edit Scripts)

" A sequence of basic edit operations that
convert one tree into another.

*M X-Diff (Edit Scripts Example)

Example:
E(T1 2> T2) = Delete(5),Insert(5(B, A),3),Update(6, w).
E’(T1 > T2) = Update(5, A), Delete(5), Insert(5(B, A),3),

| InAata/R /)

Figure 3.1 An example for edit scripts

X-Diff (General Cost Model for

&W Edit Scrlpts)

Given an edit script E:
Cost (E) =n, where E=01 0203 ... On
and Qi is a basic edit operation.

w X-Diff

Definitions:

2.

E is a minimum-cost edit script
(optimal edit script) for (T1 =2 T2) iff
for all edit scripts E" of (T1 - T2) cost
(E’) = cost (E)

Editing distance: Dist (T1,T2) = Cost
(E), where E is a minimum-cost edit
script for (T1 = T2)

X-Diff (Node Signature and
&W Minimum-Cost Matching)

" It is not a good idea to match every node Iin
the first tree to every node in the second tree
because each node in XML has its own
context.

" Also nodes with different names and with
different node types shouldn’t be matched.

" Is it sufficient to only match nodes with the
same name and type to decide if they match?

X-Diff (Node Signature and
&W Minimum-Cost Matching)

" Given a DOM tree T:
Root (T): root of T
Type (x): node type of x
Name (x): node name of x
Value (x): node value of x

Signature (x) = /Name(x1)/.../Name (xn)/Name
(x)/Type (x) where x1 is the root of T, (x1, x2,
... Xn, X) Is the path from root to x. if x is a text
node,

Signature (x) = /Name(x1)/.../Name (xn)/Type
(X)

):
):

X-Diff (Node Signature and
Minimum-Cost Matching)

" A set of node pairs (x, y), M, is called a Matching
from T1 to T2, iff
i (x,y) € M,x € T1,y ¢ T2, Signature (x) = Signature (y).
o Forall (x1,y1) ¢ M, and (x2,y2) ¢ M, x1=x2 iff y1=y2
(one to one to correspondence)
5. Mis prefix closed, i.e., given (X, y) € M, suppose x’ is the
parent of x, y’ is the parent of y, then (x, y’) ¢ M.

. Suppose (x1,y1) € M, (x2,y2) € M, x1 is an ancestor of x2
iff y1 is an ancestor of y2.

. Mis a matching from T1 to T2, M={} iff (Root(T1), Root(T2))
Is not ¢ M.

&M X-Diff (Algorithm)

Input:
" Doc1 and Doc2 (two XML documents)
Algorithm:
3. Parsing and Hashing
4. Matching

5. Generating Minimum-Cost Edit Script

&m X-Diff (Algorithm)

1. Parsing and Hashing:

Parsing XTree 1s a subset of
Do

Dom Tree.

During the parsing process X-Diff uses a special Hash function
(XHash) to compute a hash value for every node on both trees.
Two Isomorphic trees have the same XHash value for their
nodes (each node’s hash value represents the entire subtree).

Running time: O(IT11 * log (IT11) + IT2l *log(IT2l))

X-Diff (Algorithm)

1, Matching:
Reduce matching space: filter out equivalent subtrees between two root
nodes by comparing the XHash values of second level child nodes.

1. Compute the editing distance for each of the remaining subtree pairs and
obtain a minimum-cost matching.

2 Compute the editing distance between T1 and T2 and obtain minimum-
cost matching.

Dynamic programming and minimum-cost maximum flow algorithms are used
to compute Dist(T1, T2), starting from the leaf node pairs and moving
upwards.

Running time: O(|T1| * |T2| * max {deg(T1),deg(T2)} * log
(max{deg(T1),deg(T2)})

3. Generating Minimum Cost Edit Script:

Done recursively from root to leaves.
Running time : O(|T1| + |T2|)

&M UML-Diff by FUJABA

Motivation:
OMG -> MDA
MDA (PIM - PDM)
UML

BasicGraph

WBasicGraph ()

?’addBasiand& (node :BasicNode) : Void
'?’getEasiande (idx :Integer): BasicNode
9 isEmpty () Boolean
*'?trsmoveﬁasicﬂnde (node :BasicNode): Boolean ¢

11" | @ size (): Integer al |1
¥ hasNode
¥ hasEdge
BasicNode .
* hasQutgoingEdge
%Basicﬂnde (bGraph :BasicGraph) I _) BasicEdge
9 countincomingEdges () Integer » haslncomingEdge
§ countOutgoingEdges () : Integer r . fn”E!assir;Eﬂg&{rc:rigiru:E!asicl*h::cins.-, destination :BasicNode)

9 insertincomingEdge (edge :BasicEdge) : Void
§ insertOutgoingEdge (edge :BasicEdge): Void -

Figure 1. Initial model of BasicGraph

SimpleGraph

¥ SimpleGraph ()

¥ SimpleGraph (io:|OHandler)

‘§checkConstraints (origin :BasicNode | dest:BasicNode)@ Void
¥ store (io:|OHandler }: Void

BasicGraph

B

I

NonCyclicGraph

¥ NonCyclicGraph ()

¥ NonCyclicGraph (io:IOHandler)

@checkConstraints (origin :BasicNode , dest :Basichode) Void
@§isReachable (origin :BasicNode , dest:BasicNode) Boolean
¥ store (io:|OHandler) Void

BasicNode

Y@ Basichode (bGraph :BasicGraph)

Y BasicNode (io:|OHandler , bGraph :BasicGraph)
¥ countincomingEdges () : Integer

% countQutgoingEdges () : Integer

® getBasicGraph () : BasicGraph

=

V@ BasicGraph ()

V@ BasicGraph (io:IOHandler)

V§addBasicEdge (edge:BasicEdge }: Void
V§addBasicNode (node :BasicNode): Void
‘E’.checkcnnsh'aims (origin :BasicNode | dest:BasicNode) Void
V§getBasicEdge (index :Integer): BasicEdge

V@ getBasicNode (index :Integer }: Basichode

® hasEdges () : Boolean

@ isEmpty () : Boolean

@ numberQfEdges () Integer
?tremnueBasicEdge (edge :BasicEdge) : Boolean
‘E'.remnueBasid\lnde (node :Basichode) : Boolean
@ size (): Integer

Y§insertincomingEdge (edge :BasicEdge): Void
Y§insertOutgoingEdge (edge :BasicEdge): Void
® isConnectedTo (destination :BasicNode) : Boolean

YgremovelncomingEdge (edge:BasicEdge) : Void
Y@removeOutgoingEdge (edge:BasicEdge) : Void
® store (io:IOHandler) : Void

B

B ® store (io:IOHandler) Void B
1
¥ hasElement
GraphElement
® store (io:IOHandler) : Void g
* hasincomingEdge
1 BasicEdge
* hasOutgoingEdge V4 BasicEdge (io:|OHandler | bg:BasicGraph)
1 .| V¢ BasicEdge (origin :BasicNode, destination :BasicNode)
@ removeEdge () Void
@ store (io:IOHandler) : Void B

Figure 2: Final model of BasicGraph

SimpleGraph

® SimpleGraph ()

® SimpleGraph (io:IOHandler)

'ﬁ’.checkCDnstr:aints {ongin :BasicNode , dest:BasicNode) : Void

& store (io:IOHandler) : Void B

1

NonCyclicGraph

® NonCyclicGraph {)

® NonCyclicGraph (io:lQHandler)

'ff.c:heck[lonstr:aints, {origin :BasicNode , dest:BasicNode) : Void
ﬁ?‘isl-{eachable (ongin :BasicMode , dest:BasicNode) : Boolean

& store (io:10Handler) : Void S|

4 hasMNode

BasicNode 0.*

‘/§BasicNode (bGraph :BasicGraph)
?’BasicNDde (io:lOHandler , bGraph :BasicGraph)
& countincomingEdges () : Integer

® countOutgoingEdges () : Integer

® getBasicGraph () : BasicGraph

® insertincomingEdge (edge :BasicEdge) : Void

BasicGraph

|| "eBasicGraph ()

@"L‘.«asicGraph {io:I0OHandler)

?’adduaaictdge (edge :BasicEdge): Void
"§addBasicNode (node :BasicNode) : Void
?.checkf:ﬂnstraints {origin :BasicMode , dest :BasicNode) : Void
%getfjasictdge (index :Integer): Basickdge
P§getBasicNode (idx [lindex :Integer) : BasicNode
® hasEdges () : Boolean

® isEmpty () : Boolean

® numberQfEdges () : Integer

?‘remweuasictdge (edge :BasicEdge) : Boolean
¥§removeBasicNode (node :BasicNode) : Boolean
® size () : Integer

® store (io:IOHandler) : Void B

]

1 1

¥ hasklement
0.-

GraphEfement ¥ hasEdge

® store (io:I0Handler): Void g

S

BasicEdge

® insertOutgoingEdge (edge :BasicEdge) : Void » hasincomingEdge _ _ _

® isConnectedTo (destination :BasicNode): Boolean 1 0. %:;:z;:g:::ﬁ;ﬂi&iﬂhﬂif&;ﬁiﬁ:]E:asiande)
removelncomingEdge (edge :BasicEdge) : Void .) n - ' :

e g-dge (edg ge) * hasOutgoingEdge ® removeEdge () : Void

'ﬁ’.remwef}utgﬂinglzdge (edge :Basickdge): Void
& store (io:10Handler): Void H

0.* | ® store (io:IOHandler): Void

S|

Figure 3: Document with difference information

&W UML-Diff

1.

First store the UML models as XMI
files. Why can't we simply use a tool
that compares XMI files?

Because XMI files can contain tool
specific and other auxiliary data and
the order in which elements are stored
in XMI files depend on tool used for
conversion, this leads to many
Irrelevant textual differences.

w UML-Diff

Second we interpret

XMl files as graphs, the =

main structure of the Calculation [—M Uniﬂedxmh
graph is a tree which ¢
contains references XMI2

(idrefs in XMI). See Visualization
next slide! ¥

2. We then perform the
difference on the trees,
and generate an XMl
file containing
difference information.

Difference Diagranﬁ

=fTML: Association>
- <UML: Association name="lst" namespace="1d26" xi1d="1419%"=
- <IML: Association. c onnection=
- <lIML: AssociationEnd agaregation="composite” 1sNavigable="falze" name="hTMLList" ordermg="unordered" visthihty="publc" xm.1d="14151">
- <UML: AssociationEnd nultiplicity >
- <UML: Multiphcity>
- <UML: Multipheity range>
<UML: MultiphicityE ange lower="1" upper="1"/>
<UNML: Multiphcity range >
<fUNL: Multipheity>
<fUNL: AssociationEnd multiplicity >
- <lIML: AssociationEnd participant>
<UML: Classifier xi adref="1d57"/>
=fTML: AssociationEnd participant=
<IIML: AssociationEnd~
- <lIML: AssociationEnd agaregation="none" isNavigable="false" name="hTMLF orm" ordenmg="unordered" visthihty="pubhc" xp1d="141%2">
- <IIML: AssociationEnd multiplicity =
- <UML: Multipheity>
- <UML: Multipheity range>
<UML: MultiphcityRange lower="1" upper="1"/>
<UNL: Multipheity range >

</UML: Multiplicity> id 87 id 118
<(UML: AssociationEnd multiphcity= HTMLForm HTHILList
- <UNL: AssociationEnd participant> @ name : String ,
<UML: Classifier xuud idref="id118"/> @ seipt: URL 4 multSel - Booleandey

name : String
=UML: AssociationEnd. participant> # size : Dimension -

& add (listHTMLList) : Void i
</UML: AssociationEnd= % a0 Enameﬁtring):'. void it | @ add (name:String) : void
<{ITVL: Association.connection 9 105ting 0 '.Etrin " ' : % toString) String -
<fUML: Association=

@ submit: SubmifType -

Document

WUML-Diff Data Model

+name :5tring

Reference contains
+name :String references)
Element + isOfType ElementType
N +name :String +name :String
hasReference +hashValue :byie[] +threshold :float 0. 1
+path :String B
Attribute * +version :int
- « N
+name :String)
+value :String hasAttribute subelementTypes

hasSubelement

Figure 4: The data model of the difference algorithm

UML-Dift (Difference

w Algorithm)

" Two phases:

1. Bottom-Up:

. First we compare all inferior elements. Classifier
elements (Class element) are compared.
Elements with unique similarity to exactly one
other element are matched. Similarity is noticed
If its value is greater than a threshold value that
IS specified for each element type. In figure 5,
no match was found at the classifier, parameter
and operation level. Only at the Class level. In
such a case we switch to phase |l

UML-Dift (Difference

&m Algorithm)

. Top-Down:

We start with the last match in the bottom-up phase,
and we propagate down to the children
elements (Composite structure of our data
model). Order of similar elements can differ
from order of bottom up phase due to the fact
that parent elements have been matched and
eventually referenced elements.

We stop when all the elements have been
compared in the bottom-up phase.

The result is a corresponding table consisting of
matching element pairs.

w UML-Diff (Algorithm phases)

o
compareTypes "l
bottom-up

(2) Match!

propagateMatching

-
- -

Operaioh) 1) Similar'rl';'

top-down
(2) Match
Farameter Parameter @mﬂer (1) Slmllun?@@ @
{2) Maich
v @ @ Classiier]JSImIIarI;y Classiier @
{2) Maich

Operaton Operatian

Figure 3: The bottom-up and top-down phase of the algorithm

*JM UML-Diff (Similarity Function)

We set up some criteria for our similarity function in a
configuration file.

" Elements of the same type are compared and they are given a
similarity value [0,1], where 0 means no similarity and 1 means
mostly similar.

" SiMg =2, cW,. Compare, (e, e2)
Element Type | Threshold | Criterion weight
Class 0.4 Similarity of the class names 0.4

Ratio of similar or matched Operations | 0.2
Ratio of similar or matched Attributes 0.2
Generalization targets match 0.1
Packages match 0.1

UML-Diff (Output)

- The output is simply a correspondence table consisting of all
the matched element pairs as well as A unified document
contalrémg all elements in both documents exactly once is
created.

- We can then simply compute the differences.
" Types of differences:
a. Structural difference (SD):
Elements that have no entry in the correspondence table.

5. Attribute difference (AD):

Corresponding elements that differ in their attribute values get an AD
obtaining both, the old and the new value.

6. Reference difference (RD):

Corresponding elements whose references are different in the two
original documents have a reference difference.

7. Move difference (MD):
Elements that appear to change their parent element.

w UML-Diff (Optimization)

" Complexity: O(n?) where n is the number of
elements in both XM| documents.

" Pre-phase: Use hashing similar to the X-Diff
algorithm. We calculate the path of each
element regarding to the composite structure
of the data-model.

" The determination of paths has complexity O(n)

and takes place during parsing (from XMI to data-
model).

" Finding elements with identical paths takes O

(n*log(n)).

" The disadvantage of this optimization is that
moxe|s) cannot be detected (different element
paths

UML-Diff (Evaluation

Quantity Det. Ditferences Errors
Testdata Elem. | CL SD% > | oD SD | HMY%s | o | 3 RT(s)
HTMLPackage
VO vs. VI 171 17 | 55.56% 97 2 95 71% 0 1] 0.5
VO ws. V2 204 20 | 65.69% 136 2 134 66%0 0] 0.5
VI1ws, V2 185 23 | 21.08% 39] 39 84%0 0] 0.5
UMLdAiff Packages 26.04.04-15.07.04
diagModel 504 32 | 30.85% 270 22 248 79% 0] 0.9
compltems 595 35 | 46.,55% 291 14 277 72% 0] 0.7
calculator 1545 66 | 69.45% | 1088 15 1073 78% 0 0 .5
altogether 2929 99 | 57.87% | 1740 45 1695 7T8% 0] 3.7
Fujaba Packages 01.01.04-21.07.04
asg 1755 102 7.69% 148 13 35 94%% 0 0 l.1
fsa 7020 199 2.76% 208 14 194 99%% 0] 2.9
basic 8629 | 237 | 28.98% | 2551 S0 | 2501 87% 0] 12.69
uml 13973 | 284 6.13% 971 114 857 93% - - [4.95
Ritterspiel V0=21.01.04, V1=29.03.04, V2=27.07.04
VO vs. VI 621 36 | 43.32% 282 13 269 59% 1 1 0.9
VIO vs. V2 1057 44 | 66.70% 723 18 705 56% 1 1 1.3
VI1ws, V2 1276 48 | 34.17% 449 13 430 87% 0 1 1.5
Fujaba BasicPackage Series
01.01.-04.01. 11054 | 230 0.00%0 4 3 0 100% 0 0 3.95
22.01.-25.01. s648 | 237 | 28.05% | 2435 9 | 2426 98% 0 0 5.15
09.02.-12.02. 6224 | 240 0.16% 18 8 10 98% 0] 3.2
19.03.-22.03. 7666 | 267 0.03% 13 11 2 98% 0 0 3.70

Table

2: Test results

w UML-Diff (Demo)

Demo!

References

X-Diff Paper:
Yuan Wang, David J. DeWitt, and Jin-Yi Cai. X-Diff: An Effective Change

Detection Algorithm for XML Documents. In 19th International Conference
on Data Engineering, March 5 - March 8, 2003 - Bangalore, India, 2003.

UML-Diff paper:
The following paper has been accepted but yet to be published, special thanks
to J6rg Niere who made it available for me:
Udo Kelter, Jérg Niere. A Generic Difference Algorithm for UML Models.
FUJABA:

Thomas Kilein, Ulrich~A. Nickel, Jorg Niere, and Albert Zundorf. From UML to
Java And Back Again. Tech. Rep. tr-ri-00-216, University of Paderborn,
Paderborn, Germany, September 1999.

FUJABA Web site:
http://www.cs.upb.de/cs/fujaba/index.html

