
1

GenGED vs AToM3

Presented by Denis Dubé
March 24, 2005

Creating a visual DEVS modeling environment

2

Overview

� Introduction to DEVS
�Why, what, and how

� Round 1: Basic Diagram Editor
� Round 2: The Visual Modeling Environment
� Round 3: Generating PyDEVS code
� Conclusion and Future Work

3

What is DEVS?

� Discrete EVent System Specification
� Highlights:

� Based on a formal modeling and simulation framework
� Derived from mathematical dynamical system theory
� Supports hierarchical, modular construction
� Supports discrete event approximation of continuous

systems

4

What Lockheed uses DEVS for

� Critical Mobile Target
� Global Positioning System III
� Arsenal Ship
� Coast Guard Deep Water
� Space Operations Vehicle
� Common Aero Vehicle
� Joint Composite Tracking Network
� Integrated System Center
� Space Based Laser
� Space Based Discrimination
� Missile Defense (Theater / National)

5

quanti
zation

signal
events

signal
pheno
mena

process
pheno
mena

Large Scale:
•Conceptual model contains 25,000 objects for 33 goa ls, 27 tasks,etc.
•Approximately 400,000 lines of code.
•14 man-years: 6 knowledge engineers and 12 experts

One advantage of DEVS is compactness: 50,000 reduction in data volume

Effective analysis and control of the
behavior of blast furnaces at high resolution

DEVS in control of steel production

6

Atomic Models

Ordinary
Differential
Equation
Models

Spiking
Neuron
Models

Coupled Models

Petri Net
Models

Cellular
Automata

n-Dim
Cell Space

Partial
Differential
Equations

Self Organized
Criticality
Models

Processing/
Queuing/

Coordinating

Processing
Networks

Networks,
Collaborations Physical

Space

DEVS Expressability

can be
components
in a coupled
model

Multi
Agent

Systems

Discrete
Time/

StateChart
Models

Quantized
Integrator

Models

Spiking
Neuron

Networks

Stochastic
Models

Reactive
Agent

Models

Fuzzy
Logic

Models

7

DEVS notation

M = <X,S,Y, δint , δext , λ, ta>
where
X: set of input values
S: set of states
Y: set of output values
δint: Internal transition function
δext : External transition function

λ: Output Function
ta : Time advance function

8

How DEVS works

� System is in State s

� If no external event (δext) occurs, the system
stays in s for the time period given by the time
advance function: ta(s)

� After ta(s) time, e=ta(s), system outputs λ(s)

� If an external event (δext) occurs the new state
is determined by x (input value), current state s,
and e

� e = how long the system was in that state

9

How DEVS works

� Internal transitions generate output
� System states in state “s” for time ta before making

internal transition and generating output

� External transitions do not generate output
� Response to external input

DEVS Hierarchical Modular Composition
Atomic: lowest level model,

contains structural dynamics
-- model level modularity

Atomic

Atomic Atomic

Atomic

+ coupling

Coupled: composed of
one or more atomic
and/or coupled
models

Atomic

Atomic

Atomic

Hierarchical
construction

11

Overview

� Introduction to DEVS
� Round 1: Basic Diagram Editor

�Modeling tool review
� Implementation

� Round 2: The Visual Modeling Environment
� Round 3: Generating PyDEVS code
� Conclusion and Future Work

12

Modeling tools

� Generation of Graphical
Environments for Design

� A Tool for Multi-formalism and
Meta-Modeling

13

� Java but the PARCON constraints
handler is in Objective C, thus
GenGED works properly only on
Linux (with libc5, such as the
extinct species Red Hat 4.0) &
Solaris

� Python 2.3 and Tcl/Tk 8.3 (or
better), completely platform
independent (in theory)

Implementations

14

Creating a formalism

� Graphical Object Editor (draw visual icons)

� TypiEditor (map icons to semantic objects)
� ConEditor (connect semantic objects)

15

Alphabet editor: GOE

� Primitive objects: rectangles, circles, arrows, etc.

� Composite of primitive objects linked via
graphical constraints

16

Alphabet editor: TypiEditor

� Mapping to graph
nodes/edges of:
� Graphical Objects

� Place holders (non-visual)

� Creation of attribute data
types by instantiating
built-in data types

17

Alphabet editor: ConEditor

� Attribution mode: map nodes/edges with one or more
data types

� Link mode: source and target definition for edges

18

Creating a formalism
� Entity Relationship

19

Overview

� Introduction to DEVS
� Round 1: Basic Diagram Editor

�Modeling tool review
� Implementation

� Round 2: The Visual Modeling Environment
� Round 3: Generating PyDEVS code
� Conclusion and Future Work

20

Implementation

� Goal: Draw diagram with following components:
� Coupled DEVS (rectangle + name attribute)
� Atomic DEVS (rectangle + name attribute)
� States (circle + name attribute)
� Ports (square + name attribute)
� Inside relationship � Coupled with Coupled
� Inside relationship � Atomic with Coupled
� Inside relationship � State with Atomic
� Arrow relationship � External & internal transitions
� Arrow relationship � Channels (between ports)

21

Alphabet editor

� Graphical Object Editor and TypiEditor?

� Update: Now it’s a Symbol Editor

22

23

Alphabet editor

� Connection Editor
� Specify relationship between different entities

24

25

26

27

28

Diagram Editor

� With our Alphabet defined, we can now generate
a diagram editor to test our prototype
� NOTE: We already have layout at this point!

29

1. Double click on Symbols or Datatypes and they appear on the canvas

2. Double click on operations, the source, and target to establish connections between
Symbols and Datatypes or Symbols and Symbols (with layout constraints)

• Problem: In our prototype, an arrow relationship requires a total of 6 double clicks to
connect its front and back ends to other entities!

30

Entity Relationship
� Startup AToM3 with the default formalism,

Entity Relationship version 3
�Specify Entities, Relationships, and

Cardinalities

31

• Note: the cardinalities are consistent with UML class notion of cardinalities
but these are enforced at run-time

32

• Attributes must also be set, such as names, but also non-visual attributes like
timeAdvance and output, that are used for code generation

33

Entity Relationship
� Now we must provide a graphical

representation
�Note: This is the inverse order of how we do things

in GenGED and that we are not even dealing with
layout yet (except implicitly in the case of arrows)

34

• Connection ports that arrows
will automatically lock on to

35

36

37

Entity Relationship
� We have now specified everything save

any notion of layout
�This is sufficient to generate a diagram editor

and test our prototype

38

1. The relations are specified in just two clicks, and drawing entities requires at
most one click in the toolbar and one on the canvas

2. This was difficult to draw, since there are no layout constraints yet, and
selecting something brings it to the foreground… (must select everything else
to bring THEM to the foreground if that happens)

39

Overview

� Introduction to DEVS
� Round 1: Basic Diagram Editor
� Round 2: The Visual Modeling Environment

�Grammars and Constraint/Actions

� Implementation

� Round 3: Generating PyDEVS code
� Conclusion and Future Work

40

Grammars & Constraints

� Build a syntax grammar

� The GenGED grammar editor can automatically
generate “Alphabet Rules” from the visual alphabet

� In the GenGED examples, this is sufficient for a syntax
grammar

41

Grammars & Constraints

� Syntax grammar rules allow us to explicitly define
how entities are:

� Inserted
� Deleted
� Re-named
� Connected

42

Grammars & Constraints

� We may also want to define a parse grammar
� Ensures that the diagram represents a correct DEVS

model!

� The parse grammar works by:
� Reducing it to an empty diagram with the parse rules
Or
� Augmenting an empty diagram to the arbitrary diagram

with the parse rules

43

Grammars & Constraints

� No syntax grammar, but we can use:
1. Pre/Post conditions (Constraints)

� Can use this to make sure a state in one
atomic DEVS does not have a transition to a
state in another atomic DEVS

2. Pre/Post actions
� Directly create hierarchical structure, add

layout constraints
� Or simply forward events to another model

designed to handle reactive behavior…

44

Grammars & Constraints

� Parse grammar

� In theory, it would be possible to write a
graph grammar in AToM3 that reduces a
model to an empty diagram with rules
that can only be applied to a correct
diagram

� In practice, I don’t think this has ever
been tried in AToM3…

45

Overview

� Introduction to DEVS
� Round 1: Basic Diagram Editor
� Round 2: The Visual Modeling Environment

�Grammars and Constraint/Actions

� Implementation

� Round 3: Generating PyDEVS code
� Conclusion and Future Work

46

Grammar editor

� Automatic generation of “Visual Language
Rules”

� Should be sufficient for a syntax grammar which
we can generate from the rules

47

• Above we see the automatically generated rule for inserting
a coupledDevsV2 entity

• The LHS is empty, so we can always add a new
coupledDevsV2 entity

• The RHS includes not just the entity, but the associated
Datatype (attribute), thus saving us time!

• FYI: “V2” means nothing special

48

• Above we see the automatically generated rule for inserting
an atomicDevsV2 entity

• The LHS is NOT empty, so we can only insert this entity
when a coupledDevsV2 is present in our working diagram

• It is not possible to edit automatically generated rules and
since this is the only rule to allow insertion of an
automicDevsV2, we have a problem as we can NOT create
a new rule that does not require a coupleDevsV2 in the LHS

• Perhaps an error was made in the Alphabet editor…

49

• Indeed, this insert rule for portDevsV2 is complete nonsense

50

Visual Language Spec

� Automatic generation of a visual language environment
� NOTE: Flaws in the automatically generated syntax grammar are ignored

51

VL Environment

� Diagram creation/editing done using syntax grammar rules

52

• The syntax grammar makes creation of entities with attributes much easier

• However creating a relationship is even harder now!

• In general: requires 8 clicks… none of which are in close proximity

53

Pimping out the ER

� Add Constraints/Actions code � Layout!

54
• A quick and dirty method, much copy&pasted code hidden away in here…

55

• An alternative scheme: each entity/relationship instance gets an instance of
a statechart model and forwards action events to it

56

Reactive behavior
� Explicitly modeled behavior with DCharts (a form of

statecharts by Thomas Feng)
� Each entity gets an instance of the DChart model
� Layout actions are triggered by creation, selection, and

dragging

57

Reactive behavior

58

• Dragging Coupled or Atomic components drags the children too

• Coupled and Atomic components re-size to fit their children

• Ports snap to their parent Coupled or Atomic components

• Arrows are automatically anchored and curved

59

• Model level attributes can also be set, including
optimization level, to trade beauty for performance

60

Overview

� Introduction to DEVS
� Round 1: Basic Diagram Editor
� Round 2: The Visual Modeling Environment
� Round 3: Generating PyDEVS code
� Conclusion and Future Work

61

Code Generation

� No native support for generation of code from a
model

� The ability to specify the generation of arbitrary
text to a file as a side affect of running a grammar
rule can probably be added to the system without
much difficulty

� In light of the poor practical performance of the
generated editor, I chose not to attempt this

62

Code Generation

1. Write out Python code
2. Add it to the buttons model for DEVS

63

1. Import arbitrary code

2. Run it with the root of our graph as a parameter

3. Code generator can now simply traverse all the nodes

• ALTERNATIVE: Can use graph grammars too, indeed, the buttons model we are
editing here was automatically generated from the ER Model specification using a
very simple graph grammar that matches ER Entities once each

64

Code Generation

� Or…
� Just adapt code from:

Ernesto Posse

� Modified to be platform independent

� Copies the PyDEVS simulator to the
generation target
� PyDEVS by: Jean-Sébastien Bolduc

and Hans Vangheluwe

65

• Is it not nifty? Even the generated code is hierarchical!

66

Overview

� Introduction to DEVS
� Round 1: Basic Diagram Editor
� Round 2: The Visual Modeling Environment
� Round 3: Generating PyDEVS code
� Conclusion and Future Work

67

Conclusion

� GenGED is high on concept and has many
interesting ideas, particularly concerning layout
� I believe AToM3 could definitely benefit from the

integration of a similar layouting tool
� In particular, it makes the generation of a prototype

diagram editor very easy, even for non-experts

� Unfortunately, this tool is low on implementation
1. Very limited platform support
2. Interface not suited for most practical applications
3. No native support for generating code

68

Conclusion

� Very flexible, at the cost of some manual
coding

� API keeps growing, so more and more
high level methods such as

� scaling to fit x
� hierarchical selection/drag
are being made available to formalism creators

� Buggy (but getting better :D)
� No tutorials!?! (soon!)

69

Future Work

� The generated DEVS tool can be improved by:
� Adding hierarchical hiding
� Adding N atomic/coupled components
� Adding special state/atomic component that is

not as visual but doesn’t limit the expressivity
of DEVS

� Adding hierarchical force transfer (overlap)
� Testing with a meaningful DEVS example

70

References (1/4)

� DEVS Today: Recent Advances in Discrete
Event Based Information Technology
� Author: Bernard P. Zeigler
� MASCOTS' 03, Orlando, FL, October 2003
� http://www.lsis.org/vie_du_labo/uploads/Recent_

advances_in_discrete_ev_36.ppt&e=7620

� DEVS TUTORIAL
� Authors: John Kitzinger and Prasanna Sridhar
� http://vlab.unm.edu/documents/Tutorial1.ppt&e=7

620

71

References (2/4)
� pythonDEVS

� Authors: Hans Vangheluwe, Jean-Sébastien Bolduc, Ernesto Posse,
Spencer Borland

� http://moncs.cs.mcgill.ca/MSDL/research/projects/DE VS/
� Generation of DEVS modelling and simulation environm ents

� Authors: Ernesto Posse and Jean-Sébastien Bolduc
� In A. Bruzzone and Mhamed Itmi, editors, Summer Computer

Simulation Conference. Student Workshop, pages S139 - S146.
Society for Computer Simulation International (SCS) , July 2003.
Montréal, Canada.

� http://www.cs.mcgill.ca/~hv/publications/03.SCSC.DE VScodegen.
pdf

� Domain-Specific Modelling for analysis and design of traffic
networks
� Authors: Hans Vangheluwe and Juan de Lara
� Winter Simulation Conference, pages 249 - 258. IEEE Computer

Society Press, December 2004. Washington, DC.
� http://www.cs.mcgill.ca/~hv/publications/04.Winters im.Traffic.pdf

72

References (3/4)
� Sencario Views for Visual Behavior Models in GenGED

� Authors: C. Ermel and R. Bardohl
� Proc. Workshop on Graph Transformation and Visual Modeling Techniques (GT-

VMT'02), Satellite Event of First Int. Conference on Graph Transformation
(ICGT'02), Barcelona, Spain, Oct. 2002, pages 71-83

� http://www.tfs.cs.tu-berlin.de/~rosi/publications/EB02_gtVMT.ps.gz
� A Generic Graphical Editor for Visual Languages based on Algebraic Graph

Grammars
� Author: Roswitha Bardohl
� Proc. IEEE Symposium on Visual Languages (VL'98), Sept.1998, Halifax,

Canada, pages 48-55
� http://www.tfs.cs.tu-berlin.de/~rosi/publications/Bar98_VL98.ps.gz

� GenGED - A visual definition tool for visual modeling environments
� Authors: Bardohl,R., Ermel,C., and Weinhold,I.
� Proc. Application of Graph Transformations with Industrial Relevance

(AGTIVE'03), pages 407-414, Sept./Oct., 2003, Charlottesville/Virgina, USA.
Also in Lecture Notes in Computer Science (LNCS) 3062, Springer, 2004, pages
413-419

� http://www.tfs.cs.tu-berlin.de/~rosi/publications/BEW03_AGTIVE03.ps.gz

73

References (4/4)
� Conceptual Model of the Generic Graphical Editor GenGEd for the Visual

Definition of Visual Languages
� Authors: Bardohl,R. and Ehrig,H.
� Lecture Notes in Computer Science (LNCS) 1764: Theory and Application of

Graph Transformation (TAGT'98), Springer 1999, pages 252-266
� http://www.tfs.cs.tu-berlin.de/~rosi/publications/BE99_TAGT98_Lncs.ps.gz

� Scenario Animation for Visual Behavior Models: A Generic Approach
Applied to Petri Nets
� Authors: Bardohl,R. and Ermel,C.
� Proc. 10th Workshop on Algorithms and Tools for Petri Nets (AWPN'03) Sept.

2003, Eichstätt-Ingolstadt, Germany.
� http://www.tfs.cs.tu-berlin.de/~rosi/publications/BE03_AWPN.ps.gz

� Specifying Visual Languages with GenGED
� Authors: Bardohl,R., Ehrig,K., Ermel,C., Qemali,A. and Weinhold,I.
� Proc. APPLIGRAPH Workshop on Applied Graph Transformation (AGT'02),

Satellite Event of ETAPS 2002, Grenoble, France, April 12-13, 2002, pages 71-
82

� http://www.tfs.cs.tu-berlin.de/~rosi/publications/BEEQW02_AGT.ps.gz

