GenGED vs AToM³

Creating a visual DEVS modeling environment

Presented by Denis Dubé March 24, 2005

Overview

- Introduction to DEVS
 - Why, what, and how
- Round 1: Basic Diagram Editor
- Round 2: The Visual Modeling Environment
- Round 3: Generating PyDEVS code
- Conclusion and Future Work

What is DEVS?

- Discrete EVent System Specification
- Highlights:
 - Based on a formal modeling and simulation framework
 - Derived from mathematical dynamical system theory
 - □ Supports hierarchical, modular construction
 - Supports discrete event approximation of continuous systems

What Lockheed uses DEVS for

- Critical Mobile Target
- Global Positioning System III
- Arsenal Ship
- Coast Guard Deep Water
- Space Operations Vehicle
- Common Aero Vehicle
- Joint Composite Tracking Network
- Integrated System Center
- Space Based Laser
- Space Based Discrimination
- Missile Defense (Theater / National)

M

DEVS in control of steel production

Large Scale:

- •Conceptual model contains 25,000 objects for 33 goals, 27 tasks,etc.
- •Approximately 400,000 lines of code.
- •14 man-years: 6 knowledge engineers and 12 experts

One advantage of DEVS is *compactness*: 50,000 reduction in data volume

Effective analysis and control of the behavior of blast furnaces at high resolution

DEVS Expressability

DEVS notation

 $M = \langle X, S, Y, \, \delta_{\text{int}} \,, \, \delta_{\text{ext}} \,, \, \lambda, \, ta \rangle$ where

X: set of input values

S: set of states

Y: set of output values

δint: Internal transition function

δext: External transition function

λ: Output Function

ta: Time advance function

How DEVS works

- System is in State s
- If no external event (oext) occurs, the system stays in s for the time period given by the time advance function: ta(s)
- After ta(s) time, e=ta(s), system outputs $\lambda(s)$
- If an external event (δ ext) occurs the new state is determined by x (input value), current state s, and e
- e = how long the system was in that state

How DEVS works

- Internal transitions generate output
 - System states in state "s" for time ta before making internal transition and generating output
- External transitions do not generate output
 - □ Response to external input

DEVS Hierarchical Modular Composition

Atomic: lowest level model, contains structural dynamics -- model level modularity

Overview

- Introduction to DEVS
- Round 1: Basic Diagram Editor
 - Modeling tool review
 - Implementation
- Round 2: The Visual Modeling Environment
- Round 3: Generating PyDEVS code
- Conclusion and Future Work

Modeling tools

 Generation of Graphical Environments for Design

 A Tool for Multi-formalism and Meta-Modeling

Implementations

Java but the PARCON constraints handler is in Objective C, thus GenGED works properly only on Linux (with libc5, such as the extinct species Red Hat 4.0) & Solaris

Python 2.3 and Tcl/Tk 8.3 (or better), completely platform independent (in theory)

Creating a formalism

- Graphical Object Editor (draw visual icons)
- TypiEditor (map icons to semantic objects)
- ConEditor (connect semantic objects)

Alphabet editor: GOE

- Primitive objects: rectangles, circles, arrows, etc.
- Composite of primitive objects linked via graphical constraints

Alphabet editor: TypiEditor

- Mapping to graph nodes/edges of:
 - □ Graphical Objects
 - □ Place holders (non-visual)
- Creation of attribute data types by instantiating built-in data types

Alphabet editor: ConEditor

- Attribution mode: map nodes/edges with one or more data types
- Link mode: source and target definition for edges

Creating a formalism

Entity Relationship

Overview

- Introduction to DEVS
- Round 1: Basic Diagram Editor
 - Modeling tool review
 - Implementation
- Round 2: The Visual Modeling Environment
- Round 3: Generating PyDEVS code
- Conclusion and Future Work

Implementation

- Goal: Draw diagram with following components:
 - Coupled DEVS (rectangle + name attribute)
 - Atomic DEVS (rectangle + name attribute)
 - □ States (circle + name attribute)
 - □ Ports (square + name attribute)
 - □ Inside relationship → Coupled with Coupled
 - □ Inside relationship → Atomic with Coupled
 - □ Inside relationship → State with Atomic
 - □ Arrow relationship → External & internal transitions
 - □ Arrow relationship → Channels (between ports)

- Graphical Object Editor and TypiEditor?
- Update: Now it's a Symbol Editor

- Connection Editor
 - Specify relationship between different entities

- With our Alphabet defined, we can now generate a diagram editor to test our prototype
 - NOTE: We already have layout at this point!

Entity Relationship

- Startup AToM3 with the default formalism,
 Entity Relationship version 3
 - Specify Entities, Relationships, and Cardinalities

Entity Relationship

- Now we must provide a graphical representation
 - □ Note: This is the inverse order of how we do things in GenGED and that we are not even dealing with layout yet (except implicitly in the case of arrows)

Entity Relationship

- We have now specified everything save any notion of layout
 - This is sufficient to generate a diagram editor and test our prototype

Overview

- Introduction to DEVS
- Round 1: Basic Diagram Editor
- Round 2: The Visual Modeling Environment
 - □ Grammars and Constraint/Actions
 - Implementation
- Round 3: Generating PyDEVS code
- Conclusion and Future Work

- Build a syntax grammar
 - ☐ The GenGED grammar editor can automatically generate "Alphabet Rules" from the visual alphabet
 - □ In the GenGED examples, this is sufficient for a syntax grammar

- Syntax grammar rules allow us to explicitly define how entities are:
 - Inserted
 - Deleted
 - □ Re-named
 - Connected

- We may also want to define a parse grammar
 - Ensures that the diagram represents a correct DEVS model!
- The parse grammar works by:
 - □ Reducing it to an empty diagram with the parse rulesOr
 - Augmenting an empty diagram to the arbitrary diagram with the parse rules

- No syntax grammar, but we can use:
- 1. Pre/Post conditions (Constraints)
 - Can use this to make sure a state in one atomic DEVS does not have a transition to a state in another atomic DEVS

2. Pre/Post actions

- Directly create hierarchical structure, add layout constraints
- Or simply forward events to another model designed to handle reactive behavior...

- Parse grammar
- In theory, it would be possible to write a graph grammar in AToM³ that reduces a model to an empty diagram with rules that can only be applied to a correct diagram
- In practice, I don't think this has ever been tried in AToM³...

Overview

- Introduction to DEVS
- Round 1: Basic Diagram Editor
- Round 2: The Visual Modeling Environment
 - Grammars and Constraint/Actions
 - Implementation
- Round 3: Generating PyDEVS code
- Conclusion and Future Work

Grammar editor

- Automatic generation of "Visual Language Rules"
- Should be sufficient for a syntax grammar which we can generate from the rules

Visual Language Spec

- Automatic generation of a visual language environment
 - NOTE: Flaws in the automatically generated syntax grammar are ignored

Diagram creation/editing done using syntax grammar rules

■ Add Constraints/Actions code → Layout!

Reactive behavior

- Explicitly modeled behavior with DCharts (a form of statecharts by Thomas Feng)
- Each entity gets an instance of the DChart model
- Layout actions are triggered by creation, selection, and dragging

Reactive behavior

Overview

- Introduction to DEVS
- Round 1: Basic Diagram Editor
- Round 2: The Visual Modeling Environment
- Round 3: Generating PyDEVS code
- Conclusion and Future Work

Code Generation

- No native support for generation of code from a model
- The ability to specify the generation of arbitrary text to a file as a side affect of running a grammar rule can probably be added to the system without much difficulty
- In light of the poor practical performance of the generated editor, I chose not to attempt this

Code Generation

- Write out Python code
- 2. Add it to the buttons model for DEVS

Code Generation

- Or...
 - Just adapt code from:Ernesto Posse

- Modified to be platform independent
- Copies the PyDEVS simulator to the generation target
 - PyDEVS by: Jean-Sébastien Bolduc and Hans Vangheluwe

Overview

- Introduction to DEVS
- Round 1: Basic Diagram Editor
- Round 2: The Visual Modeling Environment
- Round 3: Generating PyDEVS code
- Conclusion and Future Work

Conclusion

- GenGED is high on concept and has many interesting ideas, particularly concerning layout
 - □ I believe AToM³ could definitely benefit from the integration of a similar layouting tool
 - In particular, it makes the generation of a prototype diagram editor very easy, even for non-experts
- Unfortunately, this tool is low on implementation
 - Very limited platform support
 - 2. Interface not suited for most practical applications
 - 3. No native support for generating code

Conclusion

- Very flexible, at the cost of some manual coding
- API keeps growing, so more and more high level methods such as
 - scaling to fit x
 - hierarchical selection/dragare being made available to formalism creators
- Buggy (but getting better :D)
- No tutorials!?! (soon!)

Future Work

- The generated DEVS tool can be improved by:
 - Adding hierarchical hiding
 - Adding N atomic/coupled components
 - Adding special state/atomic component that is not as visual but doesn't limit the expressivity of DEVS
 - Adding hierarchical force transfer (overlap)
 - Testing with a meaningful DEVS example

References (1/4)

- DEVS Today: Recent Advances in Discrete Event Based Information Technology
 - □ Author: Bernard P. Zeigler
 - MASCOTS' 03, Orlando, FL, October 2003
 - □ http://www.lsis.org/vie_du_labo/uploads/Recent_advances_in_discrete_ev_36.ppt&e=7620
- DEVS TUTORIAL
 - Authors: John Kitzinger and Prasanna Sridhar
 - □ http://vlab.unm.edu/documents/Tutorial1.ppt&e=7 620

M

References (2/4)

- pythonDEVS
 - □ Authors: Hans Vangheluwe, Jean-Sébastien Bolduc, Ernesto Posse, Spencer Borland
 - □ http://moncs.cs.mcgill.ca/MSDL/research/projects/DEVS/
- Generation of DEVS modelling and simulation environments
 - □ Authors: Ernesto Posse and Jean-Sébastien Bolduc
 - In A. Bruzzone and Mhamed Itmi, editors, Summer Computer Simulation Conference. Student Workshop, pages S139 - S146. Society for Computer Simulation International (SCS), July 2003. Montreal, Canada.
 - http://www.cs.mcgill.ca/~hv/publications/03.SCSC.DEVScodegen.pdf
- Domain-Specific Modelling for analysis and design of traffic networks
 - □ Authors: Hans Vangheluwe and Juan de Lara
 - □ Winter Simulation Conference, pages 249 258. IEEE Computer Society Press, December 2004. Washington, DC.
 - □ http://www.cs.mcgill.ca/~hv/publications/04.Wintersim.Traffic.pdf 71

References (3/4)

- Sencario Views for Visual Behavior Models in GenGED
 - □ Authors: C. Ermel and R. Bardohl
 - Proc. Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT'02), Satellite Event of First Int. Conference on Graph Transformation (ICGT'02), Barcelona, Spain, Oct. 2002, pages 71-83
 - □ http://www.tfs.cs.tu-berlin.de/~rosi/publications/EB02_gtVMT.ps.gz
- A Generic Graphical Editor for Visual Languages based on Algebraic Graph Grammars
 - Author: Roswitha Bardohl
 - Proc. IEEE Symposium on Visual Languages (VL'98), Sept.1998, Halifax, Canada, pages 48-55
 - http://www.tfs.cs.tu-berlin.de/~rosi/publications/Bar98_VL98.ps.gz
- GenGED A visual definition tool for visual modeling environments
 - □ Authors: Bardohl,R., Ermel,C., and Weinhold,I.
 - Proc. Application of Graph Transformations with Industrial Relevance (AGTIVE'03), pages 407-414, Sept./Oct., 2003, Charlottesville/Virgina, USA. Also in Lecture Notes in Computer Science (LNCS) 3062, Springer, 2004, pages 413-419
 - http://www.tfs.cs.tu-berlin.de/~rosi/publications/BEW03_AGTIVE03.ps.gz

References (4/4)

- Conceptual Model of the Generic Graphical Editor GenGEd for the Visual Definition of Visual Languages
 - □ Authors: Bardohl,R. and Ehrig,H.
 - □ Lecture Notes in Computer Science (LNCS) **1764**: Theory and Application of Graph Transformation (TAGT'98), Springer 1999, pages 252-266
 - □ http://www.tfs.cs.tu-berlin.de/~rosi/publications/BE99_TAGT98_Lncs.ps.gz
- Scenario Animation for Visual Behavior Models: A Generic Approach Applied to Petri Nets
 - □ Authors: Bardohl, R. and Ermel, C.
 - □ Proc. 10th Workshop on Algorithms and Tools for Petri Nets (AWPN'03) Sept. 2003, Eichstätt-Ingolstadt, Germany.
 - □ http://www.tfs.cs.tu-berlin.de/~rosi/publications/BE03_AWPN.ps.gz
- Specifying Visual Languages with GenGED
 - □ Authors: Bardohl,R., Ehrig,K., Ermel,C., Qemali,A. and Weinhold,I.
 - □ Proc. APPLIGRAPH Workshop on Applied Graph Transformation (AGT'02),
 Satellite Event of ETAPS 2002, Grenoble, France, April 12-13, 2002, pages 71-82
 - □ http://www.tfs.cs.tu-berlin.de/~rosi/publications/BEEQW02_AGT.ps.gz