# An Introduction to the HLA Part 1

Roger McFarlane
School of Computer Science
McGill University
Montreal, CANADA

#### **Overview**

- Introduction
  - What is the HLA?
  - Motivation
  - Goals
  - History
- HLA Components
  - The RTI
  - HLA Rules
  - Object Model Templates
- For Next Time ...

#### Introduction

- What is the HLA?
- Motivation
- Goals
- History

#### What is the HLA?

- A general framework facilitating interoperability and reusability of distributed simulation components
- Developed by the Defense Modeling and Simulation Office (DSMO)
- Developed for the United States Department of Defence (DoD)
- IEEE Standard 1516-2000

#### **Motivation**

- Many large/complex simulations involve individual "sub-simulations" of components
- "Sub-simulations" are often heterogeneous (in the type of simulation and type of component)
- Simulators for the components may already exist
- Re-implementing or retrofitting a simulation system is risky and expensive

#### Goals

#### Reusability

 A component simulation may be used in different scenarios and applications over its lifetime

#### Interoperability

- Aggregate simulations composed of multiple component simulations
- Aggregate simulations distributed across heterogeneous hardware and software platforms
- Reuse without significant code change or development cost
- Combine component simulations with diverse models of computation and representation

#### **History**



#### **HLA Components**

- Definitions & Terms
- Technical Architecture
- HLA Rules
- Object Model Templates
- Run-Time Interface Specification

### **Definitions & Terms (1)**

#### Federate

 An application which supports the HLA and is capable of participating in a simulation.

#### Federation

 A declaration between federates describing how and what will be simulated.

#### Federation Execution

A run-time instantiation of a Federation; that is, an actual simulation execution.

# **Definitions & Terms (2)**

- The HLA provides the Federation formalism by which Federates can be modeled such that the framework can support Federation
   Execution
- This is really no different from any other type of modelling and simulation application!

#### **Technical Architecture**



# **Example**

# **Run-Time Infrastructure (1)**

- Software layer providing common services to federates
- RTI Specification defines the interfaces federates must use to obtain services and interact with other federates
- RTI Specification defines interfaces to be exposed by federates in order to be recognizable by the services and by other federates

# **Run-Time Infrastructure (2)**

- Improvements on older standards
  - DIS
  - ALSP
- Provides efficient inter-federate communications
- Separate simulation concerns from communication concerns
- Language and platform independent

### **Service Groups**

- Federation management
- Declaration management
- Object management
- Ownership management
- Time management
- Data Distribution management
- Support services

#### **Federation Management**

- Controls federation-wide activities during a federation execution
- Services offered:
  - Creation and destruction of federation executions
  - Joining and resigning of federates
  - Pause/Resume federation execution
  - Save/Restore federation execution

#### **Declaration Management**

- Manages the publisher/subscriber model for information exchange
- Services Offered:
  - Publish Object/Interaction class
  - Subscribe to Object Class Attribute
  - Subscribe to Interaction Class
  - Control Updates
  - Control Interactions

### **Object Management**

- Manages the lifecycle and message passing for object instances
- Services Offered:
  - Register/Discover Object
  - Update/Reflect Attribute Values
  - Send/Receive Interaction
  - Remove Object
  - Manage Transport/Ordering

#### **Ownership Management**

- Supports cooperative modelling by allowing attribute ownership to be transferred across instances
- Services Offered:
  - Assume/Divest Attribute Ownership
  - Acquire/Release Attribute Ownership
  - Notification of ownership changes

# **Time Management (1)**

- Coordinates federate time advancement along the federation time axis
- Attempts to preserve causality and ordering
- Mechanisms supported:
  - Conservative synchronization (with look ahead)
  - Optimistic synchronization (e.g., time warp)
  - Hybrid methods
  - Time-stepped
  - Real-time driven

# **Time Management (2)**

- Federates request permission to advance their local time
- Services offered
  - Request Time Advance
  - Notification of Granting of Time Advance
  - Request Next Event
  - Notification of Granting of Next Event
  - Queue Management

## **Data Distribution Management**

- Efficient data transmission between federates
- Uses routing spaces to direct data only to the interested parties
  - Publisher specifies the update region
  - Subscribes specify their interest region
  - Intersection define routing space

#### **Support Services**

- Miscellaneous functionality useful to joined federates
  - Name-to-handle transformation
  - Handle-to-name transformation
  - Setting advisory switches
  - Manipulating regions
  - RTI start-up and shutdown

#### **HLA Rules**

- Define the behaviour and capabilities of federates and federations
- Five rules for Federates
- Five rules for Federations

#### **Federation Rules**

- Must have an Federation Object Model (FOM) documented using the OMT
- All object representation occur in the Federates, not in the RTI
- Data exchange between instances of objects in different Federates occurs via the RTI
- Federates must interact with the RTI in accordance with the HLA Interface Specification
- During Federation Execution, an instance attribute may be owned by at most one federate at any given time

#### **Federate Rules**

- Must have a Simulation Object Model (SOM) documented using the OMT
- Must be able to update/reflect instance attributes and send/receive interactions as specified in their SOM
- Must be able to dynamically transfer/accept ownership of attributes during federation execution as specified in their SOM
- Must be able to vary the conditions under which they provide attribute updates as specified in their SOM
- Must manage their local time in a manner which allows them to coordinate data exchange with other federates

#### **Object Model Templates**

- Provide a mechanism for specifying data exchange and coordination within a federation
- Provide a mechanism for describing the capabilities of federate
- Facilitates design and implementation of common tools for building HLA compliant objects

#### **Types of Object Models**

- Simulation Object Model (SOM)
- Federation Object Model (FOM)
- Management Object Model (MOM)

#### **SOM – Simulation Object Model**

- Information exposed/consumed by a federate
  - Objects
  - Interactions
  - Attributes (of Objects and Interactions)
  - Parameters (of Objects and Interactions)

## FOM – Federation Object Model

- Specifies data exchange between federates
  - Objects
  - Interactions
  - Attributes (of Objects)
  - Parameters (of Interactions)
- Provides the "information model contract" which governs the simulation
- Provides the foundation for interoperability

## MOM – Management Object Model

- A predefined set of information elements to be included in the FOM
- Contains data relevant to Federation Execution
- Federates may also include referenced to the MOM if they may influence Federation execution.

# **OMT Components (1)**

- Object model identification table
- Object class structure table
- Interaction class structure table
- Attribute table
- Parameter table
- Dimension table
- Time representation table

# **OMT Components (2)**

- User-supplied tag table
- Synchronization table
- Transportation type table
- Switches table
- Datatype tables
- Notes table
- FOM/SOM lexicon

## **Object Model Identification Table**

- Describes object model's identity
- Useful for developers seeking reusable object models
- Why the object model was constructed
- How the object model was constructed
- Who knows about the object model
- Where to look for more information

# **Example – Object Model Identification Table**

| Category           | Information                           |
|--------------------|---------------------------------------|
| Name               | Object Model Name                     |
| Туре               | "SOM" or "FOM"                        |
| Version            | Version Identifier                    |
| Modification Date  | Last Modified Date (YYYY-MM-DD)       |
| Purpose            | Why was this object model developed   |
| Application Domain | Type of Application                   |
| Sponsor            | Name of Sponsoring Organization       |
| POC                | Point of Contact's Name               |
| POC Organization   | Point of Contact's Organization       |
| POC Telephone      | Point of Contact's Telephone Number   |
| POC Email          | Point of Contact's Email Address      |
| References         | Where to look for further information |
| Other              | Any other relevant data               |

#### **Object Class Structure Table**

- Defines super/sub-class relationships
- For a SOM, classes may be tagged ...
  - P: The federate is capable of publishing at least one attribute of the object class.
  - S: The federate is capable of subscribing to at least one attribute of the object class.
  - PS: Both publish and subscribe
  - N: The federate is neither capable of publishing nor subscribing to any attributes of the object class.
- For a FOM, the same tags indicate if least one federate is capable of publishing or subscribing to any attribute of the object class

## **Example – Object Class Structure Table**

|        | Customer (PS) |                  |             |                   |                 |
|--------|---------------|------------------|-------------|-------------------|-----------------|
|        | Bill (PS)     |                  |             |                   |                 |
|        | Order (PS)    |                  |             |                   |                 |
|        |               | Greeter (PS)     |             |                   |                 |
|        | Employee (N)  | Waiter (PS)      |             |                   |                 |
| HLA    |               | Cashier (PS)     |             |                   |                 |
| Object | Food (S)      | Main Course (PS) |             |                   |                 |
| Root   |               | Appetizer (S)    | Soup (S)    | Clam Chowder (PS) | Manhattan (P)   |
| (N)    |               |                  |             |                   | New England (P) |
|        |               |                  |             | Beef Barley (PS)  |                 |
|        |               |                  | Salad (S)   |                   |                 |
|        |               | Entrée (S)       | Soofood (S) | Shrimp (PS)       |                 |
|        |               |                  | Seafood (S) | Salmon (PS)       |                 |
|        |               |                  | Pasta (PS)  |                   |                 |

#### Interaction Class Structure Table

- Specific actions which a federate may perform
- Hierarchy similar to Object Class Structure Table
- SOM Interactions may be tagged
  - P: The federate is capable of publishing the interaction class
  - S: The federate is capable of subscribing to the interaction class
  - PS: Both publish and subscribe
  - N: The federate is neither capable of publishing nor subscribing to the interaction class
- Same tags used for a FOM meaning there does (not) exist a federate capable of publishing/subscribing to the interaction class.

## **Example – Interaction Class Structure Table**

|                    | Customer<br>Transaction<br>(P) | Customer Seated (PS) |                        |
|--------------------|--------------------------------|----------------------|------------------------|
|                    |                                | Order Taken (P)      | From Kids Menu (P)     |
|                    |                                |                      | From Adult Menu (P)    |
|                    |                                |                      | Drink Served (P)       |
| HLA<br>Object      |                                | Food Served (P)      | Appetizer Served (P)   |
| Object<br>Root (N) |                                |                      | Main Course Served (P) |
|                    |                                |                      | Dessert Served (P)     |
|                    |                                | Cuetemen Deus (D)    | By Credit Card (P)     |
|                    |                                | Customer Pays (P)    | By Cash (P)            |
|                    |                                | Customer Leaves (P)  |                        |

#### **Attribute Table**

- Properties of an object
- May be published by the object
- Other objects may subscribe to an attribute
- Declare how/when an attribute value changes
- Declares if attribute ownership may be transferred between objects
  - DA = Divest & Acquire
  - N = Neither
- The transport used to communicate the attribute

## **Example – Attribute Table**

| Object                  | Attribute  | Data Type   | Update<br>Type | Update<br>Condition | D/A | P/S | Available<br>Dimensions     | Transportation | Order     |
|-------------------------|------------|-------------|----------------|---------------------|-----|-----|-----------------------------|----------------|-----------|
| Root                    | PTDO       | NA          | NA             | NA                  | N   | N   | NA                          | HLAReliable    | Timestamp |
| Employee                | PayRate    | Dollars     | Cond.          | Merit               | DA  | PS  | NA                          | HLAReliable    | Timestamp |
|                         | Seniority  | Years       | Periodic       | +1/year             | DA  | PS  | NA                          | HLAReliable    | Timestamp |
|                         | Phone      | Text        | Cond.          | Empl. Req.          | DA  | PS  | NA                          | HLAReliable    | Timestamp |
|                         | Address    | Text        | Cond.          | Empl. Req.          | DA  | PS  | NA                          | HLAReliable    | Timestamp |
| Employee.<br>Waiter     | Efficiency | WaiterValue | Cond.          | Perf. Rev.          | DA  | PS  | NA                          | HLAReliable    | Timestamp |
| Walter                  | Manner     | WaiterValue | Cond.          | Perf. Rev.          | DA  | PS  | NA                          | HLAReliable    | Timestamp |
|                         | State      | WaiterTask  | Cond.          | Work Flow           | DA  | PS  | NA                          | HLAReliable    | Timestamp |
| Food.<br>Drink          | Cups       | DrinkCount  | Cond.          | Cust. Req.          | N   | PS  | BarQuantity                 | HLAReliable    | Timestamp |
| Food.<br>Drink.<br>Soda | Flavour    | FlavourType | Cond.          | Cust. Req.          | N   | PS  | BarQuantity,<br>SodaFlavour | HLAReliable    | Timestamp |

#### **Parameter Table**

- Additional information to characterize an interaction
- Identify the transport used to deliver the parameter
- Identify the ordering constraints for the parameter
  - Timestamp
  - Receive (indeterminate order)

## **Example – Parameter Table**

| Interaction               | Parameter     | Datatype    | Available<br>Dimensions | Transportation | Order     |
|---------------------------|---------------|-------------|-------------------------|----------------|-----------|
| Customer<br>Seated        | NA            | NA          | NA                      | HLAReliable    | Timestamp |
| FoodServed.<br>MainCourse | TemperatureOK | ServiceStat | WaiterID                | HLAReliable    | Timestamp |
| Served.                   | AccuracyOK    | ServiceStat |                         |                |           |
|                           | TimelinessOK  | HLABoolean  |                         |                |           |

#### **Dimension Table**

- Maps domain specific data values onto integer values ranging from zero to some upper bound
- Specifies the legal values which may be transmitted across the RTI
- Enables Data Distribution Management (DDM) and Declaration Management (DM)
- Used to specify update and subscribe regions to the RTI

## **Example – Dimension Table**

| Name        | DataType    | Upper<br>Bound | Normalization                                     | Value If Not Specified |
|-------------|-------------|----------------|---------------------------------------------------|------------------------|
| SodaFlavour | flavourType | 3              | LinearEnumerated( Flavour, {Cola, Orange, Grape}) | [03)                   |
| BarQuantity | DrinkCount  | 25             | Linear(<br>NumberCups, 0, 25)                     | [01)                   |
| WaiterId    | Empld       | 20             | Linear(WaiterId, 0, 20)                           | Excluded               |

#### **Time Representation Table**

- Declares the format used to represent time
  - For a federate
  - Across a federation
- Declares the semantics of time
  - For a federate
  - Across a federation
- Used by the RTI to coordinate federates during federation execution

## **Example – Time Representation Table**

| Category  | Datatype | Semantics                                              |
|-----------|----------|--------------------------------------------------------|
| Timestamp | TimeType | Floating point value expressed in minutes              |
| LookAhead | LAType   | Non-negative floating point value expressed in minutes |

#### **User-Supplied Tag Table**

- Extensible mechanism for specifying auxiliary data
- Provides additional control and coordination of services provided by the HLA

# Example – User-Supplied Tag Table

| Category               | Datatype      | Semantics                         |
|------------------------|---------------|-----------------------------------|
| Update/Reflect         | NA            | NA                                |
| Send/Receive           | NA            | NA                                |
| Delete/Remove          | HLAascii      | Reason for deletion               |
| Divestiture Request    | PriorityLevel | High value for immediate transfer |
| Divestiture Completion | NA            | NA                                |
| Acquisition Request    | PriorityLevel | High value for immediate transfer |
| Request Update         | NA            | NA                                |

#### **Synchronization Table**

- Provides a federate synchronization mechanism
- Federates declare the synchronization points they support
- Federations describe the synchronization points to be used

# **Example – Synchronization Table**

| Label            | Tag<br>Datatype | Capability          | Semantics                                                                                                                   |
|------------------|-----------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------|
| InitialPublish   | NA              | Achieve             | Achieved when all classes are published and subscribed, and all initially present objects are registered                    |
| InitialUpdate    | NA              | Achieve             | Achieved when instance attribute values for all initially present objects are updated                                       |
| BeginTimeAdvance | NA              | Achieve             | Achieved when time management services are invoked                                                                          |
| PauseExecution   | TimeType        | Register<br>Achieve | Achieved when the time advance after the time in the user-supplied tag is attained; time advance requests should then cease |

#### **Transportation Type Table**

- The RTI provides different mechanisms for transport of interactions and attributes between federates
- Allows a federate designer to describe the transports supported by the federate
- Allows federation designers to describe the transportation contracts between federates

# **Example – Transportation Type Table**

| Name          | Description                                                                                                                               |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| HLAreliable   | Provide reliable delivery of data in the sense that TCP/IP delivers its data reliably                                                     |
| HLAbestEffort | Make an effort to deliver data in the sense that UDP provides best-effort delivery                                                        |
| LowLatency    | Choose the delivery mechanism that results in the lowest latency from service initiation to callback invocation at the receiving federate |

#### **Switches Table**

- Configuration of RTI activities performed on behalf of a federate
- A few services are configured globally for the federation
  - Auto Provide, Convey Region Designator Sets
- Most services are configured per federate
  - Attribute Scope Advisory, Attribute Relevance
     Advisory, Object Class Relevance Advisory, Service
     Reporting
- Services may be either enabled or disabled

### **Switch Definitions (1)**

#### Auto Provide

- (Global) Should the RTI automatically solicit updates from instance attribute owners when an object is discovered.
- Convey Region Designator Sets
  - (Global) Should the RTI provide the optional Sent Region Set argument with invocations of Reflect Attribute Values and Receive Interaction.
- Attribute Scope Advisory
  - Should the RTI advise federates when attributes of an object instance come into or go out of scope.

### **Switch Definitions (2)**

- Attribute Relevance Advisory
  - Should the RTI advise federates about whether they should provide attribute value updates for the value of an attribute of an object instance.
- Object Class Relevance Advisory
  - Should the RTI advise federates about whether they should register instances of an object class.
- Interaction Relevance Advisory
  - Should the RTI advise federates about whether they should send interactions of an interaction class.
- Service Reporting
  - Should the RTI report service invocations using MOM.

## **Example – Switches Table**

| Switch                          | Setting  |
|---------------------------------|----------|
| Auto provide                    | Disabled |
| Convey region designator sets   | Disabled |
| Attribute scope advisory        | Enabled  |
| Attribute relevance advisory    | Enabled  |
| Object class relevance advisory | Enabled  |
| Interaction relevance advisory  | Enabled  |
| Service reporting               | Disabled |

### **Data Type Tables (1)**

- Globally define data types referenced in other tables
- Basic Data Table
  - Name, Size in Bits, Interpretation, Endian, Encoding
- Simple (Scalar) Data Table
  - Name, Representation, Units, Resolution, Accuracy, Semantics
- Enumerated Data Table
  - Name, Representation, Enumerator, Values, Semantics

### **Data Type Tables (2)**

- Array Data Table
  - Name, Element Type, Cardinality, Encoding, Semantics
- Fixed Record Data Table
  - Record Name, Field-{Name, Type, Semantics}\*,
     Encoding, Semantics
- Variant Record Data Table
  - Record Name, Encoding, Semantics,
     Discriminant-{Name, Type, Semantics}\*,
     Alternative--{Name, Type, Semantics}\*

#### **Notes Table**

- Named annotations may be attached to any OMT entry
- A set of name/value pairs
- Value is free form explanatory text
- Name uniquely identifies the corresponding explanatory text
- Notes may be referenced multiple times

#### FOM/SOM Lexicon

- Name/Value pairs
- Dictionary tables associating every class, attribute, interaction, parameter, etc (by name) with a free form text description (value)

#### For Next Time ....

A deeper look at the RTI

#### References (1)

- IEEE Std 1516-2000, IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) -Framework and Rules.
- IEEE Std 1516.1-2000, IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) -Federate Interface Specification
- IEEE Std 1516.2-2000, IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) -Object Model Template (OMT) Specification.

### References (2)

- Roy Crosbie and John Zenor, "High Level Architecture, Module 1 – Basic Concepts, Parts 1-6." California State University, Chico. <a href="http://www.ecst.csuchico.edu/~hla">http://www.ecst.csuchico.edu/~hla</a>
- <Steffen Strassburger's text>