
Comparison of Several
Meta-modeling Tools 2
Yi Lu

Computer Science Department
McGill University

3.24.2003

Outline

• GME

• DiaGen

• Comparison with AToM3

• Conclusion

GME

• GME (Generic Modelling Environment) is under
development of Institute for Software Integrated
Systems, Vanderbilt University, US

• It’s written in C++, currently only available in
Windows OS

• It’s totally free can be downloaded from
http://www.isis.vanderbilt.edu/Projects/gme/Download.html

GME

• The meta-model in GME is UML-based.

• The meta-modelling language is called
metaGME2000.

• The constraint language used is MCL (MultiGraph
Constraint Language), which is a predicate logic
language based on the Object Constraint Language.

• GME uses projects to manage models and meta-
models.

GME
Meta-types provided in metaGME2000:

• Entity: atom and model
• Atom: it can’t contain other objects.
• Model: it can contain other atoms, models and relationships.

• Relationship: three kinds of relationship.
• Containment: connect the atom to the model, cardinality

attribute can be defined.
• Inheritance: add an Inheritance object and define its super

class and subclass.
• Association: add a Connector and Connection object, specify

the source and the destination object for the Connector,
finally connect the Connector to the Connection to define its
association class.

GME

• Aspect : not a meta-type, a unique feature of GME, to
view models in a special point of view.

Aspects for a meta-model : Class Diagram, Visualization,
Constraints and Attributes.

• Attributes: in the attribute aspect, attributes can be
added to the entities and relationships.

• Constraints: in the Constraint aspect, constraints can be
defined using the MCL language for specific event.

• Visualization: to specify the aspects for your modelling
environment.

GME

• Interfaces to develop users’ own applications, such as
simulation:

• COM interface
• High-level C++ component interface
• Plug-ins

A Petri Net example

DiaGen

• DiaGen is a system for easy developing of diagram editors
under development of University of Erlangen, Germany.

• It’s written in Java, platform-independent.

• DiaGen is a free software, can be download from:
http://www2.informatik.uni-erlangen.de/DiaGen/

DiaGen

• DiaGen consists of two parts:

• A framework of java classes which provides generic
functionalities for editing and analyzing diagrams

• Generator: which can produce Java Source code for most of
the functionalities according to the specification of the
diagram language.

DiaGen

• The procedures to specify a diagram editor:

• Define the formal syntax of the diagram using the
specification grammar (meta-modelling language) provided
by DiaGen.

• Generate Java Source code according to the meta-model
using the generator provided by DiaGen

• Revise these source code to implement the functionalities
that your modelling environment will have

• Define appropriate constraints for recognized structural
relationships that preserve them when the diagram is
modified.

• Generate the final modelling environment of the diagram
using the editor functionality provided by DiaGen

DiaGen

• The diagram model in DiaGen is divided into three layers

• Parameter model: simple real numbers that determine the
properties of the diagram components.

• Component model: describes how the graphic representation
of the diagram is computed from the parameters and updates
the graphic representation when the parameters change.

• Formal syntax level (SRHG): the representation of those
components in the formal hypergraph syntax.

DiaGen

• The SRHG structure:

example

DiaGen

DiaGen

• Petri Net example, the specification of the diagram:

• Build the SRHG, to declare:
• Components specify what entities will appear: circle, box, arrow,

token.
• Special relations declare the relationships among the

components: inside, belongto

• Transform SRHG to HGM, to declare (reducing) :
• Terminal edges : place, transition, preArc, postArc

• Transform HGM to a more simple format (graph parser):
• Non-terminal edges: Net, places, transitions

• Operations: complex editing operations

The meta-model of Petri Net

DiaGen

• To build an editor for the diagram (modelling environment)

• Need to be familiar with the interface of the editor in DiaGen.

• combine the standard editor provided by DiaGen with the user’s
customized specifications

• This part should be coded totally manually.

• Can add customized functionalities, such as simulation,
all code by hand.

Petri Net Example

Comparison AToM3 with MetaEdit+ and DOME

No specific constraint
language

MCL (subset of OCL)Python function or OCLConstraint

Yes YesNoInheritance

Java, all code by handCOM interface, high
level C++ component,
plug-ins

Graph Grammar, an
intuitive way, less code
by hand

Simulation method and
implementation workload

Yes Yes YesSimulation

YesYes, containment
relationship

Partly, not implement
complete yet

Hierarchy

No NoNoReport generation

NoYesYesGraphical
specification?

Specification grammarmetaGME2000ER Meta-modeling
language

Platform-independentWindowsWindows, UnixPlatforms

DiaGenGMEAToM3Aspects

Conclusion

The best points for these tools:

• In AToM3, simulation is easy to implement (Graph Grammar).

• MetaEdit+ support well the report generation.

• DOME and GME support the best customization of the
modelling environment.

• DOME and GME implement more clear and complete meta-
modelling language.

• GME implement the constraint language best.

• DiaGen uses constraints to automatically adjust and manage
the graphical appearance of models.

